cos(x)
-----------
2
1 + sin (x)
d / cos(x) \ --|-----------| dx| 2 | \1 + sin (x)/
Apply the quotient rule, which is:
and .
To find :
The derivative of cosine is negative sine:
To find :
Differentiate term by term:
The derivative of the constant is zero.
Let .
Apply the power rule: goes to
Then, apply the chain rule. Multiply by :
The derivative of sine is cosine:
The result of the chain rule is:
The result is:
Now plug in to the quotient rule:
Now simplify:
The answer is:
2
sin(x) 2*cos (x)*sin(x)
- ----------- - ----------------
2 2
1 + sin (x) / 2 \
\1 + sin (x)/
/ / 2 2 \ \
| | 2 2 4*cos (x)*sin (x)| |
| 2*|sin (x) - cos (x) + -----------------| |
| | 2 | 2 |
| \ 1 + sin (x) / 4*sin (x) |
|-1 + ----------------------------------------- + -----------|*cos(x)
| 2 2 |
\ 1 + sin (x) 1 + sin (x)/
---------------------------------------------------------------------
2
1 + sin (x)
/ / 2 2 2 2 \\
| / 2 2 \ 2 | 3*sin (x) 3*cos (x) 6*cos (x)*sin (x)||
| | 2 2 4*cos (x)*sin (x)| 8*cos (x)*|1 - ----------- + ----------- - -----------------||
| 6*|sin (x) - cos (x) + -----------------| | 2 2 2 ||
| | 2 | 2 | 1 + sin (x) 1 + sin (x) / 2 \ ||
| \ 1 + sin (x) / 6*cos (x) \ \1 + sin (x)/ /|
|1 - ----------------------------------------- + ----------- + -------------------------------------------------------------|*sin(x)
| 2 2 2 |
\ 1 + sin (x) 1 + sin (x) 1 + sin (x) /
------------------------------------------------------------------------------------------------------------------------------------
2
1 + sin (x)
/ / 2 2 2 2 \\
| / 2 2 \ 2 | 3*sin (x) 3*cos (x) 6*cos (x)*sin (x)||
| | 2 2 4*cos (x)*sin (x)| 8*cos (x)*|1 - ----------- + ----------- - -----------------||
| 6*|sin (x) - cos (x) + -----------------| | 2 2 2 ||
| | 2 | 2 | 1 + sin (x) 1 + sin (x) / 2 \ ||
| \ 1 + sin (x) / 6*cos (x) \ \1 + sin (x)/ /|
|1 - ----------------------------------------- + ----------- + -------------------------------------------------------------|*sin(x)
| 2 2 2 |
\ 1 + sin (x) 1 + sin (x) 1 + sin (x) /
------------------------------------------------------------------------------------------------------------------------------------
2
1 + sin (x)