Mister Exam

Other calculators


cosx/(1+sinx^2)

Derivative of cosx/(1+sinx^2)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   cos(x)  
-----------
       2   
1 + sin (x)
$$\frac{\cos{\left(x \right)}}{\sin^{2}{\left(x \right)} + 1}$$
d /   cos(x)  \
--|-----------|
dx|       2   |
  \1 + sin (x)/
$$\frac{d}{d x} \frac{\cos{\left(x \right)}}{\sin^{2}{\left(x \right)} + 1}$$
Detail solution
  1. Apply the quotient rule, which is:

    and .

    To find :

    1. The derivative of cosine is negative sine:

    To find :

    1. Differentiate term by term:

      1. The derivative of the constant is zero.

      2. Let .

      3. Apply the power rule: goes to

      4. Then, apply the chain rule. Multiply by :

        1. The derivative of sine is cosine:

        The result of the chain rule is:

      The result is:

    Now plug in to the quotient rule:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
                     2          
     sin(x)     2*cos (x)*sin(x)
- ----------- - ----------------
         2                    2 
  1 + sin (x)    /       2   \  
                 \1 + sin (x)/  
$$- \frac{2 \sin{\left(x \right)} \cos^{2}{\left(x \right)}}{\left(\sin^{2}{\left(x \right)} + 1\right)^{2}} - \frac{\sin{\left(x \right)}}{\sin^{2}{\left(x \right)} + 1}$$
The second derivative [src]
/       /                         2       2   \              \       
|       |   2         2      4*cos (x)*sin (x)|              |       
|     2*|sin (x) - cos (x) + -----------------|              |       
|       |                              2      |         2    |       
|       \                       1 + sin (x)   /    4*sin (x) |       
|-1 + ----------------------------------------- + -----------|*cos(x)
|                           2                            2   |       
\                    1 + sin (x)                  1 + sin (x)/       
---------------------------------------------------------------------
                                    2                                
                             1 + sin (x)                             
$$\frac{\left(\frac{4 \sin^{2}{\left(x \right)}}{\sin^{2}{\left(x \right)} + 1} - 1 + \frac{2 \left(\frac{4 \sin^{2}{\left(x \right)} \cos^{2}{\left(x \right)}}{\sin^{2}{\left(x \right)} + 1} + \sin^{2}{\left(x \right)} - \cos^{2}{\left(x \right)}\right)}{\sin^{2}{\left(x \right)} + 1}\right) \cos{\left(x \right)}}{\sin^{2}{\left(x \right)} + 1}$$
3-th derivative [src]
/                                                                        /          2             2            2       2   \\       
|      /                         2       2   \                      2    |     3*sin (x)     3*cos (x)    6*cos (x)*sin (x)||       
|      |   2         2      4*cos (x)*sin (x)|                 8*cos (x)*|1 - ----------- + ----------- - -----------------||       
|    6*|sin (x) - cos (x) + -----------------|                           |           2             2                     2 ||       
|      |                              2      |         2                 |    1 + sin (x)   1 + sin (x)     /       2   \  ||       
|      \                       1 + sin (x)   /    6*cos (x)              \                                  \1 + sin (x)/  /|       
|1 - ----------------------------------------- + ----------- + -------------------------------------------------------------|*sin(x)
|                          2                            2                                      2                            |       
\                   1 + sin (x)                  1 + sin (x)                            1 + sin (x)                         /       
------------------------------------------------------------------------------------------------------------------------------------
                                                                   2                                                                
                                                            1 + sin (x)                                                             
$$\frac{\left(\frac{8 \cdot \left(- \frac{6 \sin^{2}{\left(x \right)} \cos^{2}{\left(x \right)}}{\left(\sin^{2}{\left(x \right)} + 1\right)^{2}} - \frac{3 \sin^{2}{\left(x \right)}}{\sin^{2}{\left(x \right)} + 1} + \frac{3 \cos^{2}{\left(x \right)}}{\sin^{2}{\left(x \right)} + 1} + 1\right) \cos^{2}{\left(x \right)}}{\sin^{2}{\left(x \right)} + 1} + \frac{6 \cos^{2}{\left(x \right)}}{\sin^{2}{\left(x \right)} + 1} + 1 - \frac{6 \left(\frac{4 \sin^{2}{\left(x \right)} \cos^{2}{\left(x \right)}}{\sin^{2}{\left(x \right)} + 1} + \sin^{2}{\left(x \right)} - \cos^{2}{\left(x \right)}\right)}{\sin^{2}{\left(x \right)} + 1}\right) \sin{\left(x \right)}}{\sin^{2}{\left(x \right)} + 1}$$
The third derivative [src]
/                                                                        /          2             2            2       2   \\       
|      /                         2       2   \                      2    |     3*sin (x)     3*cos (x)    6*cos (x)*sin (x)||       
|      |   2         2      4*cos (x)*sin (x)|                 8*cos (x)*|1 - ----------- + ----------- - -----------------||       
|    6*|sin (x) - cos (x) + -----------------|                           |           2             2                     2 ||       
|      |                              2      |         2                 |    1 + sin (x)   1 + sin (x)     /       2   \  ||       
|      \                       1 + sin (x)   /    6*cos (x)              \                                  \1 + sin (x)/  /|       
|1 - ----------------------------------------- + ----------- + -------------------------------------------------------------|*sin(x)
|                          2                            2                                      2                            |       
\                   1 + sin (x)                  1 + sin (x)                            1 + sin (x)                         /       
------------------------------------------------------------------------------------------------------------------------------------
                                                                   2                                                                
                                                            1 + sin (x)                                                             
$$\frac{\left(\frac{8 \cdot \left(- \frac{6 \sin^{2}{\left(x \right)} \cos^{2}{\left(x \right)}}{\left(\sin^{2}{\left(x \right)} + 1\right)^{2}} - \frac{3 \sin^{2}{\left(x \right)}}{\sin^{2}{\left(x \right)} + 1} + \frac{3 \cos^{2}{\left(x \right)}}{\sin^{2}{\left(x \right)} + 1} + 1\right) \cos^{2}{\left(x \right)}}{\sin^{2}{\left(x \right)} + 1} + \frac{6 \cos^{2}{\left(x \right)}}{\sin^{2}{\left(x \right)} + 1} + 1 - \frac{6 \left(\frac{4 \sin^{2}{\left(x \right)} \cos^{2}{\left(x \right)}}{\sin^{2}{\left(x \right)} + 1} + \sin^{2}{\left(x \right)} - \cos^{2}{\left(x \right)}\right)}{\sin^{2}{\left(x \right)} + 1}\right) \sin{\left(x \right)}}{\sin^{2}{\left(x \right)} + 1}$$
The graph
Derivative of cosx/(1+sinx^2)