Mister Exam

Derivative of 3tgx+4x-9

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
3*tan(x) + 4*x - 9
(4x+3tan(x))9\left(4 x + 3 \tan{\left(x \right)}\right) - 9
3*tan(x) + 4*x - 9
Detail solution
  1. Differentiate (4x+3tan(x))9\left(4 x + 3 \tan{\left(x \right)}\right) - 9 term by term:

    1. Differentiate 4x+3tan(x)4 x + 3 \tan{\left(x \right)} term by term:

      1. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Rewrite the function to be differentiated:

          tan(x)=sin(x)cos(x)\tan{\left(x \right)} = \frac{\sin{\left(x \right)}}{\cos{\left(x \right)}}

        2. Apply the quotient rule, which is:

          ddxf(x)g(x)=f(x)ddxg(x)+g(x)ddxf(x)g2(x)\frac{d}{d x} \frac{f{\left(x \right)}}{g{\left(x \right)}} = \frac{- f{\left(x \right)} \frac{d}{d x} g{\left(x \right)} + g{\left(x \right)} \frac{d}{d x} f{\left(x \right)}}{g^{2}{\left(x \right)}}

          f(x)=sin(x)f{\left(x \right)} = \sin{\left(x \right)} and g(x)=cos(x)g{\left(x \right)} = \cos{\left(x \right)}.

          To find ddxf(x)\frac{d}{d x} f{\left(x \right)}:

          1. The derivative of sine is cosine:

            ddxsin(x)=cos(x)\frac{d}{d x} \sin{\left(x \right)} = \cos{\left(x \right)}

          To find ddxg(x)\frac{d}{d x} g{\left(x \right)}:

          1. The derivative of cosine is negative sine:

            ddxcos(x)=sin(x)\frac{d}{d x} \cos{\left(x \right)} = - \sin{\left(x \right)}

          Now plug in to the quotient rule:

          sin2(x)+cos2(x)cos2(x)\frac{\sin^{2}{\left(x \right)} + \cos^{2}{\left(x \right)}}{\cos^{2}{\left(x \right)}}

        So, the result is: 3(sin2(x)+cos2(x))cos2(x)\frac{3 \left(\sin^{2}{\left(x \right)} + \cos^{2}{\left(x \right)}\right)}{\cos^{2}{\left(x \right)}}

      2. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: xx goes to 11

        So, the result is: 44

      The result is: 3(sin2(x)+cos2(x))cos2(x)+4\frac{3 \left(\sin^{2}{\left(x \right)} + \cos^{2}{\left(x \right)}\right)}{\cos^{2}{\left(x \right)}} + 4

    2. The derivative of the constant 9-9 is zero.

    The result is: 3(sin2(x)+cos2(x))cos2(x)+4\frac{3 \left(\sin^{2}{\left(x \right)} + \cos^{2}{\left(x \right)}\right)}{\cos^{2}{\left(x \right)}} + 4

  2. Now simplify:

    4+3cos2(x)4 + \frac{3}{\cos^{2}{\left(x \right)}}


The answer is:

4+3cos2(x)4 + \frac{3}{\cos^{2}{\left(x \right)}}

The graph
02468-8-6-4-2-1010-25002500
The first derivative [src]
         2   
7 + 3*tan (x)
3tan2(x)+73 \tan^{2}{\left(x \right)} + 7
The second derivative [src]
  /       2   \       
6*\1 + tan (x)/*tan(x)
6(tan2(x)+1)tan(x)6 \left(\tan^{2}{\left(x \right)} + 1\right) \tan{\left(x \right)}
The third derivative [src]
  /       2   \ /         2   \
6*\1 + tan (x)/*\1 + 3*tan (x)/
6(tan2(x)+1)(3tan2(x)+1)6 \left(\tan^{2}{\left(x \right)} + 1\right) \left(3 \tan^{2}{\left(x \right)} + 1\right)