Mister Exam

Other calculators


cos^2x^2

Derivative of cos^2x^2

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
        / 2\
        \2 /
(cos(x))    
$$\cos^{2^{2}}{\left(x \right)}$$
  /        / 2\\
d |        \2 /|
--\(cos(x))    /
dx              
$$\frac{d}{d x} \cos^{2^{2}}{\left(x \right)}$$
Detail solution
  1. Let .

  2. Apply the power rule: goes to

  3. Then, apply the chain rule. Multiply by :

    1. The derivative of cosine is negative sine:

    The result of the chain rule is:

  4. Now simplify:


The answer is:

The graph
The first derivative [src]
           / 2\       
           \2 /       
-4*(cos(x))    *sin(x)
----------------------
        cos(x)        
$$- \frac{4 \sin{\left(x \right)} \cos^{2^{2}}{\left(x \right)}}{\cos{\left(x \right)}}$$
The second derivative [src]
     2    /     2           2   \
4*cos (x)*\- cos (x) + 3*sin (x)/
$$4 \cdot \left(3 \sin^{2}{\left(x \right)} - \cos^{2}{\left(x \right)}\right) \cos^{2}{\left(x \right)}$$
The third derivative [src]
  /       2           2   \              
8*\- 3*sin (x) + 5*cos (x)/*cos(x)*sin(x)
$$8 \left(- 3 \sin^{2}{\left(x \right)} + 5 \cos^{2}{\left(x \right)}\right) \sin{\left(x \right)} \cos{\left(x \right)}$$
The graph
Derivative of cos^2x^2