Mister Exam

Other calculators


cos^3(4x)

Derivative of cos^3(4x)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   3     
cos (4*x)
cos3(4x)\cos^{3}{\left(4 x \right)}
d /   3     \
--\cos (4*x)/
dx           
ddxcos3(4x)\frac{d}{d x} \cos^{3}{\left(4 x \right)}
Detail solution
  1. Let u=cos(4x)u = \cos{\left(4 x \right)}.

  2. Apply the power rule: u3u^{3} goes to 3u23 u^{2}

  3. Then, apply the chain rule. Multiply by ddxcos(4x)\frac{d}{d x} \cos{\left(4 x \right)}:

    1. Let u=4xu = 4 x.

    2. The derivative of cosine is negative sine:

      dducos(u)=sin(u)\frac{d}{d u} \cos{\left(u \right)} = - \sin{\left(u \right)}

    3. Then, apply the chain rule. Multiply by ddx4x\frac{d}{d x} 4 x:

      1. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: xx goes to 11

        So, the result is: 44

      The result of the chain rule is:

      4sin(4x)- 4 \sin{\left(4 x \right)}

    The result of the chain rule is:

    12sin(4x)cos2(4x)- 12 \sin{\left(4 x \right)} \cos^{2}{\left(4 x \right)}


The answer is:

12sin(4x)cos2(4x)- 12 \sin{\left(4 x \right)} \cos^{2}{\left(4 x \right)}

The graph
02468-8-6-4-2-1010-1010
The first derivative [src]
       2              
-12*cos (4*x)*sin(4*x)
12sin(4x)cos2(4x)- 12 \sin{\left(4 x \right)} \cos^{2}{\left(4 x \right)}
The second derivative [src]
   /     2             2     \         
48*\- cos (4*x) + 2*sin (4*x)/*cos(4*x)
48(2sin2(4x)cos2(4x))cos(4x)48 \cdot \left(2 \sin^{2}{\left(4 x \right)} - \cos^{2}{\left(4 x \right)}\right) \cos{\left(4 x \right)}
The third derivative [src]
    /       2             2     \         
192*\- 2*sin (4*x) + 7*cos (4*x)/*sin(4*x)
192(2sin2(4x)+7cos2(4x))sin(4x)192 \left(- 2 \sin^{2}{\left(4 x \right)} + 7 \cos^{2}{\left(4 x \right)}\right) \sin{\left(4 x \right)}
The graph
Derivative of cos^3(4x)