/pi\ sin|--| \4 /
d / /pi\\ --|sin|--|| dx\ \4 //
Let u=π4u = \frac{\pi}{4}u=4π.
The derivative of sine is cosine:
Then, apply the chain rule. Multiply by ddxπ4\frac{d}{d x} \frac{\pi}{4}dxd4π:
The derivative of the constant π4\frac{\pi}{4}4π is zero.
The result of the chain rule is:
The answer is:
0