Mister Exam

Other calculators


cos^25x-sin^25x

Derivative of cos^25x-sin^25x

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   25         25   
cos  (x) - sin  (x)
sin25(x)+cos25(x)- \sin^{25}{\left(x \right)} + \cos^{25}{\left(x \right)}
cos(x)^25 - sin(x)^25
Detail solution
  1. Differentiate sin25(x)+cos25(x)- \sin^{25}{\left(x \right)} + \cos^{25}{\left(x \right)} term by term:

    1. Let u=cos(x)u = \cos{\left(x \right)}.

    2. Apply the power rule: u25u^{25} goes to 25u2425 u^{24}

    3. Then, apply the chain rule. Multiply by ddxcos(x)\frac{d}{d x} \cos{\left(x \right)}:

      1. The derivative of cosine is negative sine:

        ddxcos(x)=sin(x)\frac{d}{d x} \cos{\left(x \right)} = - \sin{\left(x \right)}

      The result of the chain rule is:

      25sin(x)cos24(x)- 25 \sin{\left(x \right)} \cos^{24}{\left(x \right)}

    4. The derivative of a constant times a function is the constant times the derivative of the function.

      1. Let u=sin(x)u = \sin{\left(x \right)}.

      2. Apply the power rule: u25u^{25} goes to 25u2425 u^{24}

      3. Then, apply the chain rule. Multiply by ddxsin(x)\frac{d}{d x} \sin{\left(x \right)}:

        1. The derivative of sine is cosine:

          ddxsin(x)=cos(x)\frac{d}{d x} \sin{\left(x \right)} = \cos{\left(x \right)}

        The result of the chain rule is:

        25sin24(x)cos(x)25 \sin^{24}{\left(x \right)} \cos{\left(x \right)}

      So, the result is: 25sin24(x)cos(x)- 25 \sin^{24}{\left(x \right)} \cos{\left(x \right)}

    The result is: 25sin24(x)cos(x)25sin(x)cos24(x)- 25 \sin^{24}{\left(x \right)} \cos{\left(x \right)} - 25 \sin{\left(x \right)} \cos^{24}{\left(x \right)}

  2. Now simplify:

    25(sin23(x)+cos23(x))sin(x)cos(x)- 25 \left(\sin^{23}{\left(x \right)} + \cos^{23}{\left(x \right)}\right) \sin{\left(x \right)} \cos{\left(x \right)}


The answer is:

25(sin23(x)+cos23(x))sin(x)cos(x)- 25 \left(\sin^{23}{\left(x \right)} + \cos^{23}{\left(x \right)}\right) \sin{\left(x \right)} \cos{\left(x \right)}

The graph
02468-8-6-4-2-10105-5
The first derivative [src]
        24                   24          
- 25*cos  (x)*sin(x) - 25*sin  (x)*cos(x)
25sin24(x)cos(x)25sin(x)cos24(x)- 25 \sin^{24}{\left(x \right)} \cos{\left(x \right)} - 25 \sin{\left(x \right)} \cos^{24}{\left(x \right)}
The second derivative [src]
   /   25         25            2       23            23       2   \
25*\sin  (x) - cos  (x) - 24*cos (x)*sin  (x) + 24*cos  (x)*sin (x)/
25(sin25(x)24sin23(x)cos2(x)+24sin2(x)cos23(x)cos25(x))25 \left(\sin^{25}{\left(x \right)} - 24 \sin^{23}{\left(x \right)} \cos^{2}{\left(x \right)} + 24 \sin^{2}{\left(x \right)} \cos^{23}{\left(x \right)} - \cos^{25}{\left(x \right)}\right)
The third derivative [src]
   /      23            23             2       21             21       2   \              
25*\73*cos  (x) + 73*sin  (x) - 552*cos (x)*sin  (x) - 552*cos  (x)*sin (x)/*cos(x)*sin(x)
25(73sin23(x)552sin21(x)cos2(x)552sin2(x)cos21(x)+73cos23(x))sin(x)cos(x)25 \left(73 \sin^{23}{\left(x \right)} - 552 \sin^{21}{\left(x \right)} \cos^{2}{\left(x \right)} - 552 \sin^{2}{\left(x \right)} \cos^{21}{\left(x \right)} + 73 \cos^{23}{\left(x \right)}\right) \sin{\left(x \right)} \cos{\left(x \right)}
The graph
Derivative of cos^25x-sin^25x