Mister Exam

Other calculators


cosln(1-x^2)

Derivative of cosln(1-x^2)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   /   /     2\\
cos\log\1 - x //
$$\cos{\left(\log{\left(1 - x^{2} \right)} \right)}$$
Detail solution
  1. Let .

  2. The derivative of cosine is negative sine:

  3. Then, apply the chain rule. Multiply by :

    1. Let .

    2. The derivative of is .

    3. Then, apply the chain rule. Multiply by :

      1. Differentiate term by term:

        1. The derivative of the constant is zero.

        2. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: goes to

          So, the result is:

        The result is:

      The result of the chain rule is:

    The result of the chain rule is:

  4. Now simplify:


The answer is:

The graph
The first derivative [src]
       /   /     2\\
2*x*sin\log\1 - x //
--------------------
            2       
       1 - x        
$$\frac{2 x \sin{\left(\log{\left(1 - x^{2} \right)} \right)}}{1 - x^{2}}$$
The second derivative [src]
  /                        2    /   /     2\\      2    /   /     2\\\
  |     /   /     2\\   2*x *cos\log\1 - x //   2*x *sin\log\1 - x //|
2*|- sin\log\1 - x // - --------------------- + ---------------------|
  |                                  2                       2       |
  \                            -1 + x                  -1 + x        /
----------------------------------------------------------------------
                                     2                                
                               -1 + x                                 
$$\frac{2 \left(\frac{2 x^{2} \sin{\left(\log{\left(1 - x^{2} \right)} \right)}}{x^{2} - 1} - \frac{2 x^{2} \cos{\left(\log{\left(1 - x^{2} \right)} \right)}}{x^{2} - 1} - \sin{\left(\log{\left(1 - x^{2} \right)} \right)}\right)}{x^{2} - 1}$$
The third derivative [src]
    /                                               2    /   /     2\\      2    /   /     2\\\
    |       /   /     2\\        /   /     2\\   2*x *sin\log\1 - x //   6*x *cos\log\1 - x //|
4*x*|- 3*cos\log\1 - x // + 3*sin\log\1 - x // - --------------------- + ---------------------|
    |                                                         2                       2       |
    \                                                   -1 + x                  -1 + x        /
-----------------------------------------------------------------------------------------------
                                                    2                                          
                                           /      2\                                           
                                           \-1 + x /                                           
$$\frac{4 x \left(- \frac{2 x^{2} \sin{\left(\log{\left(1 - x^{2} \right)} \right)}}{x^{2} - 1} + \frac{6 x^{2} \cos{\left(\log{\left(1 - x^{2} \right)} \right)}}{x^{2} - 1} + 3 \sin{\left(\log{\left(1 - x^{2} \right)} \right)} - 3 \cos{\left(\log{\left(1 - x^{2} \right)} \right)}\right)}{\left(x^{2} - 1\right)^{2}}$$
The graph
Derivative of cosln(1-x^2)