/ / 2\\ cos\log\1 - x //
Let .
The derivative of cosine is negative sine:
Then, apply the chain rule. Multiply by :
Let .
The derivative of is .
Then, apply the chain rule. Multiply by :
Differentiate term by term:
The derivative of the constant is zero.
The derivative of a constant times a function is the constant times the derivative of the function.
Apply the power rule: goes to
So, the result is:
The result is:
The result of the chain rule is:
The result of the chain rule is:
Now simplify:
The answer is:
/ / 2\\ 2*x*sin\log\1 - x // -------------------- 2 1 - x
/ 2 / / 2\\ 2 / / 2\\\ | / / 2\\ 2*x *cos\log\1 - x // 2*x *sin\log\1 - x //| 2*|- sin\log\1 - x // - --------------------- + ---------------------| | 2 2 | \ -1 + x -1 + x / ---------------------------------------------------------------------- 2 -1 + x
/ 2 / / 2\\ 2 / / 2\\\ | / / 2\\ / / 2\\ 2*x *sin\log\1 - x // 6*x *cos\log\1 - x //| 4*x*|- 3*cos\log\1 - x // + 3*sin\log\1 - x // - --------------------- + ---------------------| | 2 2 | \ -1 + x -1 + x / ----------------------------------------------------------------------------------------------- 2 / 2\ \-1 + x /