/ 2\ | 2*x - x | cos\E /
cos(E^(2*x - x^2))
Let .
The derivative of cosine is negative sine:
Then, apply the chain rule. Multiply by :
Let .
The derivative of is itself.
Then, apply the chain rule. Multiply by :
Differentiate term by term:
The derivative of a constant times a function is the constant times the derivative of the function.
Apply the power rule: goes to
So, the result is:
The derivative of a constant times a function is the constant times the derivative of the function.
Apply the power rule: goes to
So, the result is:
The result is:
The result of the chain rule is:
The result of the chain rule is:
Now simplify:
The answer is:
2 / 2\ 2*x - x | 2*x - x | -(2 - 2*x)*e *sin\E /
/ 2 / x*(2 - x)\ 2 / x*(2 - x)\ x*(2 - x) / x*(2 - x)\\ x*(2 - x) 2*\- 2*(-1 + x) *sin\e / - 2*(-1 + x) *cos\e /*e + sin\e //*e
/ / x*(2 - x)\ / x*(2 - x)\ x*(2 - x) 2 / x*(2 - x)\ 2 2*x*(2 - x) / x*(2 - x)\ 2 / x*(2 - x)\ x*(2 - x)\ x*(2 - x) 4*(-1 + x)*\- 3*sin\e / - 3*cos\e /*e + 2*(-1 + x) *sin\e / - 2*(-1 + x) *e *sin\e / + 6*(-1 + x) *cos\e /*e /*e