Mister Exam

Other calculators

Derivative of cos(exp^(2x-x^2))

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   /        2\
   | 2*x - x |
cos\E        /
$$\cos{\left(e^{- x^{2} + 2 x} \right)}$$
cos(E^(2*x - x^2))
Detail solution
  1. Let .

  2. The derivative of cosine is negative sine:

  3. Then, apply the chain rule. Multiply by :

    1. Let .

    2. The derivative of is itself.

    3. Then, apply the chain rule. Multiply by :

      1. Differentiate term by term:

        1. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: goes to

          So, the result is:

        2. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: goes to

          So, the result is:

        The result is:

      The result of the chain rule is:

    The result of the chain rule is:

  4. Now simplify:


The answer is:

The graph
The first derivative [src]
                   2    /        2\
            2*x - x     | 2*x - x |
-(2 - 2*x)*e        *sin\E        /
$$- \left(2 - 2 x\right) e^{- x^{2} + 2 x} \sin{\left(e^{- x^{2} + 2 x} \right)}$$
The second derivative [src]
  /            2    / x*(2 - x)\             2    / x*(2 - x)\  x*(2 - x)      / x*(2 - x)\\  x*(2 - x)
2*\- 2*(-1 + x) *sin\e         / - 2*(-1 + x) *cos\e         /*e          + sin\e         //*e         
$$2 \left(- 2 \left(x - 1\right)^{2} e^{x \left(2 - x\right)} \cos{\left(e^{x \left(2 - x\right)} \right)} - 2 \left(x - 1\right)^{2} \sin{\left(e^{x \left(2 - x\right)} \right)} + \sin{\left(e^{x \left(2 - x\right)} \right)}\right) e^{x \left(2 - x\right)}$$
The third derivative [src]
           /       / x*(2 - x)\        / x*(2 - x)\  x*(2 - x)             2    / x*(2 - x)\             2  2*x*(2 - x)    / x*(2 - x)\             2    / x*(2 - x)\  x*(2 - x)\  x*(2 - x)
4*(-1 + x)*\- 3*sin\e         / - 3*cos\e         /*e          + 2*(-1 + x) *sin\e         / - 2*(-1 + x) *e           *sin\e         / + 6*(-1 + x) *cos\e         /*e         /*e         
$$4 \left(x - 1\right) \left(- 2 \left(x - 1\right)^{2} e^{2 x \left(2 - x\right)} \sin{\left(e^{x \left(2 - x\right)} \right)} + 6 \left(x - 1\right)^{2} e^{x \left(2 - x\right)} \cos{\left(e^{x \left(2 - x\right)} \right)} + 2 \left(x - 1\right)^{2} \sin{\left(e^{x \left(2 - x\right)} \right)} - 3 e^{x \left(2 - x\right)} \cos{\left(e^{x \left(2 - x\right)} \right)} - 3 \sin{\left(e^{x \left(2 - x\right)} \right)}\right) e^{x \left(2 - x\right)}$$