Detail solution
-
Let .
-
The derivative of cosine is negative sine:
-
Then, apply the chain rule. Multiply by :
-
The derivative of a constant times a function is the constant times the derivative of the function.
-
Apply the power rule: goes to
So, the result is:
The result of the chain rule is:
The answer is:
The first derivative
[src]
$$- 6 t \sin{\left(3 t^{2} \right)}$$
The second derivative
[src]
/ 2 / 2\ / 2\\
-6*\6*t *cos\3*t / + sin\3*t //
$$- 6 \left(6 t^{2} \cos{\left(3 t^{2} \right)} + \sin{\left(3 t^{2} \right)}\right)$$
The third derivative
[src]
/ / 2\ 2 / 2\\
108*t*\- cos\3*t / + 2*t *sin\3*t //
$$108 t \left(2 t^{2} \sin{\left(3 t^{2} \right)} - \cos{\left(3 t^{2} \right)}\right)$$