Mister Exam

Other calculators


y=x^6*sin^2x

Derivative of y=x^6*sin^2x

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
 6    2   
x *sin (x)
$$x^{6} \sin^{2}{\left(x \right)}$$
x^6*sin(x)^2
Detail solution
  1. Apply the product rule:

    ; to find :

    1. Apply the power rule: goes to

    ; to find :

    1. Let .

    2. Apply the power rule: goes to

    3. Then, apply the chain rule. Multiply by :

      1. The derivative of sine is cosine:

      The result of the chain rule is:

    The result is:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
   5    2         6              
6*x *sin (x) + 2*x *cos(x)*sin(x)
$$2 x^{6} \sin{\left(x \right)} \cos{\left(x \right)} + 6 x^{5} \sin^{2}{\left(x \right)}$$
The second derivative [src]
   4 /      2       2 /   2         2   \                     \
2*x *\15*sin (x) - x *\sin (x) - cos (x)/ + 12*x*cos(x)*sin(x)/
$$2 x^{4} \left(- x^{2} \left(\sin^{2}{\left(x \right)} - \cos^{2}{\left(x \right)}\right) + 12 x \sin{\left(x \right)} \cos{\left(x \right)} + 15 \sin^{2}{\left(x \right)}\right)$$
The third derivative [src]
   3 /      2         2 /   2         2   \      3                                   \
4*x *\30*sin (x) - 9*x *\sin (x) - cos (x)/ - 2*x *cos(x)*sin(x) + 45*x*cos(x)*sin(x)/
$$4 x^{3} \left(- 2 x^{3} \sin{\left(x \right)} \cos{\left(x \right)} - 9 x^{2} \left(\sin^{2}{\left(x \right)} - \cos^{2}{\left(x \right)}\right) + 45 x \sin{\left(x \right)} \cos{\left(x \right)} + 30 \sin^{2}{\left(x \right)}\right)$$
The graph
Derivative of y=x^6*sin^2x