Detail solution
-
Apply the product rule:
; to find :
-
Apply the power rule: goes to
; to find :
-
Let .
-
Apply the power rule: goes to
-
Then, apply the chain rule. Multiply by :
-
The derivative of sine is cosine:
The result of the chain rule is:
The result is:
Now simplify:
The answer is:
The first derivative
[src]
5 2 6
6*x *sin (x) + 2*x *cos(x)*sin(x)
$$2 x^{6} \sin{\left(x \right)} \cos{\left(x \right)} + 6 x^{5} \sin^{2}{\left(x \right)}$$
The second derivative
[src]
4 / 2 2 / 2 2 \ \
2*x *\15*sin (x) - x *\sin (x) - cos (x)/ + 12*x*cos(x)*sin(x)/
$$2 x^{4} \left(- x^{2} \left(\sin^{2}{\left(x \right)} - \cos^{2}{\left(x \right)}\right) + 12 x \sin{\left(x \right)} \cos{\left(x \right)} + 15 \sin^{2}{\left(x \right)}\right)$$
The third derivative
[src]
3 / 2 2 / 2 2 \ 3 \
4*x *\30*sin (x) - 9*x *\sin (x) - cos (x)/ - 2*x *cos(x)*sin(x) + 45*x*cos(x)*sin(x)/
$$4 x^{3} \left(- 2 x^{3} \sin{\left(x \right)} \cos{\left(x \right)} - 9 x^{2} \left(\sin^{2}{\left(x \right)} - \cos^{2}{\left(x \right)}\right) + 45 x \sin{\left(x \right)} \cos{\left(x \right)} + 30 \sin^{2}{\left(x \right)}\right)$$