Mister Exam

Derivative of cos(2x)^(5)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   5     
cos (2*x)
cos5(2x)\cos^{5}{\left(2 x \right)}
d /   5     \
--\cos (2*x)/
dx           
ddxcos5(2x)\frac{d}{d x} \cos^{5}{\left(2 x \right)}
Detail solution
  1. Let u=cos(2x)u = \cos{\left(2 x \right)}.

  2. Apply the power rule: u5u^{5} goes to 5u45 u^{4}

  3. Then, apply the chain rule. Multiply by ddxcos(2x)\frac{d}{d x} \cos{\left(2 x \right)}:

    1. Let u=2xu = 2 x.

    2. The derivative of cosine is negative sine:

      dducos(u)=sin(u)\frac{d}{d u} \cos{\left(u \right)} = - \sin{\left(u \right)}

    3. Then, apply the chain rule. Multiply by ddx2x\frac{d}{d x} 2 x:

      1. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: xx goes to 11

        So, the result is: 22

      The result of the chain rule is:

      2sin(2x)- 2 \sin{\left(2 x \right)}

    The result of the chain rule is:

    10sin(2x)cos4(2x)- 10 \sin{\left(2 x \right)} \cos^{4}{\left(2 x \right)}


The answer is:

10sin(2x)cos4(2x)- 10 \sin{\left(2 x \right)} \cos^{4}{\left(2 x \right)}

The graph
02468-8-6-4-2-10105-5
The first derivative [src]
       4              
-10*cos (2*x)*sin(2*x)
10sin(2x)cos4(2x)- 10 \sin{\left(2 x \right)} \cos^{4}{\left(2 x \right)}
The second derivative [src]
      3      /     2             2     \
20*cos (2*x)*\- cos (2*x) + 4*sin (2*x)/
20(4sin2(2x)cos2(2x))cos3(2x)20 \cdot \left(4 \sin^{2}{\left(2 x \right)} - \cos^{2}{\left(2 x \right)}\right) \cos^{3}{\left(2 x \right)}
The third derivative [src]
      2      /        2              2     \         
40*cos (2*x)*\- 12*sin (2*x) + 13*cos (2*x)/*sin(2*x)
40(12sin2(2x)+13cos2(2x))sin(2x)cos2(2x)40 \left(- 12 \sin^{2}{\left(2 x \right)} + 13 \cos^{2}{\left(2 x \right)}\right) \sin{\left(2 x \right)} \cos^{2}{\left(2 x \right)}
The graph
Derivative of cos(2x)^(5)