Mister Exam

Derivative of cos(20x)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
cos(20*x)
$$\cos{\left(20 x \right)}$$
d            
--(cos(20*x))
dx           
$$\frac{d}{d x} \cos{\left(20 x \right)}$$
Detail solution
  1. Let .

  2. The derivative of cosine is negative sine:

  3. Then, apply the chain rule. Multiply by :

    1. The derivative of a constant times a function is the constant times the derivative of the function.

      1. Apply the power rule: goes to

      So, the result is:

    The result of the chain rule is:


The answer is:

The graph
The first derivative [src]
-20*sin(20*x)
$$- 20 \sin{\left(20 x \right)}$$
The second derivative [src]
-400*cos(20*x)
$$- 400 \cos{\left(20 x \right)}$$
The third derivative [src]
8000*sin(20*x)
$$8000 \sin{\left(20 x \right)}$$
The graph
Derivative of cos(20x)