Mister Exam

Derivative of arcthx^2

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
     2   
atanh (x)
$$\operatorname{atanh}^{2}{\left(x \right)}$$
atanh(x)^2
The graph
The first derivative [src]
2*atanh(x)
----------
       2  
  1 - x   
$$\frac{2 \operatorname{atanh}{\left(x \right)}}{1 - x^{2}}$$
The second derivative [src]
2*(1 + 2*x*atanh(x))
--------------------
              2     
     /      2\      
     \-1 + x /      
$$\frac{2 \left(2 x \operatorname{atanh}{\left(x \right)} + 1\right)}{\left(x^{2} - 1\right)^{2}}$$
The third derivative [src]
  /               2                    \
  |    3*x     4*x *atanh(x)           |
4*|- ------- - ------------- + atanh(x)|
  |        2            2              |
  \  -1 + x       -1 + x               /
----------------------------------------
                        2               
               /      2\                
               \-1 + x /                
$$\frac{4 \left(- \frac{4 x^{2} \operatorname{atanh}{\left(x \right)}}{x^{2} - 1} - \frac{3 x}{x^{2} - 1} + \operatorname{atanh}{\left(x \right)}\right)}{\left(x^{2} - 1\right)^{2}}$$