The second derivative
[src]
2*x 2 3*acot(x)
--------- + ------------------- + -----------
2 / 2\ 2
/ 2\ \1 + x /*(-1 + 2*x) (-1 + 2*x)
\1 + x /
---------------------------------------------
__________
\/ -1 + 2*x
$$\frac{\frac{2 x}{\left(x^{2} + 1\right)^{2}} + \frac{2}{\left(2 x - 1\right) \left(x^{2} + 1\right)} + \frac{3 \operatorname{acot}{\left(x \right)}}{\left(2 x - 1\right)^{2}}}{\sqrt{2 x - 1}}$$
The third derivative
[src]
/ / 2 \ \
| | 4*x | |
|2*|-1 + ------| |
| | 2| |
| \ 1 + x / 9 15*acot(x) 6*x |
-|--------------- + -------------------- + ----------- + --------------------|
| 2 / 2\ 2 3 2 |
| / 2\ \1 + x /*(-1 + 2*x) (-1 + 2*x) / 2\ |
\ \1 + x / \1 + x / *(-1 + 2*x)/
-------------------------------------------------------------------------------
__________
\/ -1 + 2*x
$$- \frac{\frac{6 x}{\left(2 x - 1\right) \left(x^{2} + 1\right)^{2}} + \frac{2 \left(\frac{4 x^{2}}{x^{2} + 1} - 1\right)}{\left(x^{2} + 1\right)^{2}} + \frac{9}{\left(2 x - 1\right)^{2} \left(x^{2} + 1\right)} + \frac{15 \operatorname{acot}{\left(x \right)}}{\left(2 x - 1\right)^{3}}}{\sqrt{2 x - 1}}$$