Mister Exam

Other calculators

Derivative of (arctgx)/(sqrt(2x-1))

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  acot(x)  
-----------
  _________
\/ 2*x - 1 
$$\frac{\operatorname{acot}{\left(x \right)}}{\sqrt{2 x - 1}}$$
acot(x)/sqrt(2*x - 1)
The graph
The first derivative [src]
           1               acot(x)   
- -------------------- - ------------
  /     2\   _________            3/2
  \1 + x /*\/ 2*x - 1    (2*x - 1)   
$$- \frac{1}{\sqrt{2 x - 1} \left(x^{2} + 1\right)} - \frac{\operatorname{acot}{\left(x \right)}}{\left(2 x - 1\right)^{\frac{3}{2}}}$$
The second derivative [src]
   2*x               2             3*acot(x) 
--------- + ------------------- + -----------
        2   /     2\                        2
/     2\    \1 + x /*(-1 + 2*x)   (-1 + 2*x) 
\1 + x /                                     
---------------------------------------------
                   __________                
                 \/ -1 + 2*x                 
$$\frac{\frac{2 x}{\left(x^{2} + 1\right)^{2}} + \frac{2}{\left(2 x - 1\right) \left(x^{2} + 1\right)} + \frac{3 \operatorname{acot}{\left(x \right)}}{\left(2 x - 1\right)^{2}}}{\sqrt{2 x - 1}}$$
The third derivative [src]
 /  /         2 \                                                            \ 
 |  |      4*x  |                                                            | 
 |2*|-1 + ------|                                                            | 
 |  |          2|                                                            | 
 |  \     1 + x /            9              15*acot(x)           6*x         | 
-|--------------- + -------------------- + ----------- + --------------------| 
 |           2      /     2\           2             3           2           | 
 |   /     2\       \1 + x /*(-1 + 2*x)    (-1 + 2*x)    /     2\            | 
 \   \1 + x /                                            \1 + x / *(-1 + 2*x)/ 
-------------------------------------------------------------------------------
                                    __________                                 
                                  \/ -1 + 2*x                                  
$$- \frac{\frac{6 x}{\left(2 x - 1\right) \left(x^{2} + 1\right)^{2}} + \frac{2 \left(\frac{4 x^{2}}{x^{2} + 1} - 1\right)}{\left(x^{2} + 1\right)^{2}} + \frac{9}{\left(2 x - 1\right)^{2} \left(x^{2} + 1\right)} + \frac{15 \operatorname{acot}{\left(x \right)}}{\left(2 x - 1\right)^{3}}}{\sqrt{2 x - 1}}$$