The first derivative
[src]
1 2*x*acot(x)
- --------- - -----------
2 2
/ 2\ / 2\
\1 + x / \1 + x /
$$- \frac{2 x \operatorname{acot}{\left(x \right)}}{\left(x^{2} + 1\right)^{2}} - \frac{1}{\left(x^{2} + 1\right)^{2}}$$
The second derivative
[src]
// 2 \ \
|| 4*x | 3*x |
2*||-1 + ------|*acot(x) + ------|
|| 2| 2|
\\ 1 + x / 1 + x /
----------------------------------
2
/ 2\
\1 + x /
$$\frac{2 \left(\frac{3 x}{x^{2} + 1} + \left(\frac{4 x^{2}}{x^{2} + 1} - 1\right) \operatorname{acot}{\left(x \right)}\right)}{\left(x^{2} + 1\right)^{2}}$$
The third derivative
[src]
/ 2 / 2 \ \
| 11*x | 2*x | |
-4*|-2 + ------ + 6*x*|-1 + ------|*acot(x)|
| 2 | 2| |
\ 1 + x \ 1 + x / /
--------------------------------------------
3
/ 2\
\1 + x /
$$- \frac{4 \left(\frac{11 x^{2}}{x^{2} + 1} + 6 x \left(\frac{2 x^{2}}{x^{2} + 1} - 1\right) \operatorname{acot}{\left(x \right)} - 2\right)}{\left(x^{2} + 1\right)^{3}}$$