Mister Exam

Other calculators

Derivative of arctgx/(1+x^2)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
acot(x)
-------
      2
 1 + x 
$$\frac{\operatorname{acot}{\left(x \right)}}{x^{2} + 1}$$
acot(x)/(1 + x^2)
The graph
The first derivative [src]
      1       2*x*acot(x)
- --------- - -----------
          2            2 
  /     2\     /     2\  
  \1 + x /     \1 + x /  
$$- \frac{2 x \operatorname{acot}{\left(x \right)}}{\left(x^{2} + 1\right)^{2}} - \frac{1}{\left(x^{2} + 1\right)^{2}}$$
The second derivative [src]
  //         2 \                 \
  ||      4*x  |            3*x  |
2*||-1 + ------|*acot(x) + ------|
  ||          2|                2|
  \\     1 + x /           1 + x /
----------------------------------
                    2             
            /     2\              
            \1 + x /              
$$\frac{2 \left(\frac{3 x}{x^{2} + 1} + \left(\frac{4 x^{2}}{x^{2} + 1} - 1\right) \operatorname{acot}{\left(x \right)}\right)}{\left(x^{2} + 1\right)^{2}}$$
The third derivative [src]
   /         2        /         2 \        \
   |     11*x         |      2*x  |        |
-4*|-2 + ------ + 6*x*|-1 + ------|*acot(x)|
   |          2       |          2|        |
   \     1 + x        \     1 + x /        /
--------------------------------------------
                         3                  
                 /     2\                   
                 \1 + x /                   
$$- \frac{4 \left(\frac{11 x^{2}}{x^{2} + 1} + 6 x \left(\frac{2 x^{2}}{x^{2} + 1} - 1\right) \operatorname{acot}{\left(x \right)} - 2\right)}{\left(x^{2} + 1\right)^{3}}$$