Mister Exam

Other calculators


arctg(x^2-4x)

Derivative of arctg(x^2-4x)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
    / 2      \
atan\x  - 4*x/
$$\operatorname{atan}{\left(x^{2} - 4 x \right)}$$
d /    / 2      \\
--\atan\x  - 4*x//
dx                
$$\frac{d}{d x} \operatorname{atan}{\left(x^{2} - 4 x \right)}$$
The graph
The first derivative [src]
    -4 + 2*x   
---------------
              2
    / 2      \ 
1 + \x  - 4*x/ 
$$\frac{2 x - 4}{\left(x^{2} - 4 x\right)^{2} + 1}$$
The second derivative [src]
  /                2         \
  |    4*x*(-2 + x) *(-4 + x)|
2*|1 - ----------------------|
  |            2         2   |
  \       1 + x *(-4 + x)    /
------------------------------
            2         2       
       1 + x *(-4 + x)        
$$\frac{2 \left(- \frac{4 x \left(x - 4\right) \left(x - 2\right)^{2}}{x^{2} \left(x - 4\right)^{2} + 1} + 1\right)}{x^{2} \left(x - 4\right)^{2} + 1}$$
The third derivative [src]
           /                                  2         2         2\
           |            2                  8*x *(-4 + x) *(-2 + x) |
8*(-2 + x)*|- 2*(-2 + x)  - 3*x*(-4 + x) + ------------------------|
           |                                        2         2    |
           \                                   1 + x *(-4 + x)     /
--------------------------------------------------------------------
                                          2                         
                        /     2         2\                          
                        \1 + x *(-4 + x) /                          
$$\frac{8 \left(x - 2\right) \left(\frac{8 x^{2} \left(x - 4\right)^{2} \left(x - 2\right)^{2}}{x^{2} \left(x - 4\right)^{2} + 1} - 3 x \left(x - 4\right) - 2 \left(x - 2\right)^{2}\right)}{\left(x^{2} \left(x - 4\right)^{2} + 1\right)^{2}}$$
The graph
Derivative of arctg(x^2-4x)