Mister Exam

Derivative of arctg(x+cosx)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
atan(x + cos(x))
$$\operatorname{atan}{\left(x + \cos{\left(x \right)} \right)}$$
atan(x + cos(x))
The graph
The first derivative [src]
    1 - sin(x)   
-----------------
                2
1 + (x + cos(x)) 
$$\frac{1 - \sin{\left(x \right)}}{\left(x + \cos{\left(x \right)}\right)^{2} + 1}$$
The second derivative [src]
 /               2                      \ 
 |2*(-1 + sin(x)) *(x + cos(x))         | 
-|----------------------------- + cos(x)| 
 |                      2               | 
 \      1 + (x + cos(x))                / 
------------------------------------------
                            2             
            1 + (x + cos(x))              
$$- \frac{\frac{2 \left(x + \cos{\left(x \right)}\right) \left(\sin{\left(x \right)} - 1\right)^{2}}{\left(x + \cos{\left(x \right)}\right)^{2} + 1} + \cos{\left(x \right)}}{\left(x + \cos{\left(x \right)}\right)^{2} + 1}$$
The third derivative [src]
                3                  3             2                                               
 2*(-1 + sin(x))    8*(-1 + sin(x)) *(x + cos(x))    6*(-1 + sin(x))*(x + cos(x))*cos(x)         
----------------- - ------------------------------ - ----------------------------------- + sin(x)
                2                           2                                 2                  
1 + (x + cos(x))         /                2\                  1 + (x + cos(x))                   
                         \1 + (x + cos(x)) /                                                     
-------------------------------------------------------------------------------------------------
                                                        2                                        
                                        1 + (x + cos(x))                                         
$$\frac{- \frac{8 \left(x + \cos{\left(x \right)}\right)^{2} \left(\sin{\left(x \right)} - 1\right)^{3}}{\left(\left(x + \cos{\left(x \right)}\right)^{2} + 1\right)^{2}} - \frac{6 \left(x + \cos{\left(x \right)}\right) \left(\sin{\left(x \right)} - 1\right) \cos{\left(x \right)}}{\left(x + \cos{\left(x \right)}\right)^{2} + 1} + \sin{\left(x \right)} + \frac{2 \left(\sin{\left(x \right)} - 1\right)^{3}}{\left(x + \cos{\left(x \right)}\right)^{2} + 1}}{\left(x + \cos{\left(x \right)}\right)^{2} + 1}$$
The graph
Derivative of arctg(x+cosx)