The second derivative
[src]
/ 2 \
|2*(-1 + sin(x)) *(x + cos(x)) |
-|----------------------------- + cos(x)|
| 2 |
\ 1 + (x + cos(x)) /
------------------------------------------
2
1 + (x + cos(x))
$$- \frac{\frac{2 \left(x + \cos{\left(x \right)}\right) \left(\sin{\left(x \right)} - 1\right)^{2}}{\left(x + \cos{\left(x \right)}\right)^{2} + 1} + \cos{\left(x \right)}}{\left(x + \cos{\left(x \right)}\right)^{2} + 1}$$
The third derivative
[src]
3 3 2
2*(-1 + sin(x)) 8*(-1 + sin(x)) *(x + cos(x)) 6*(-1 + sin(x))*(x + cos(x))*cos(x)
----------------- - ------------------------------ - ----------------------------------- + sin(x)
2 2 2
1 + (x + cos(x)) / 2\ 1 + (x + cos(x))
\1 + (x + cos(x)) /
-------------------------------------------------------------------------------------------------
2
1 + (x + cos(x))
$$\frac{- \frac{8 \left(x + \cos{\left(x \right)}\right)^{2} \left(\sin{\left(x \right)} - 1\right)^{3}}{\left(\left(x + \cos{\left(x \right)}\right)^{2} + 1\right)^{2}} - \frac{6 \left(x + \cos{\left(x \right)}\right) \left(\sin{\left(x \right)} - 1\right) \cos{\left(x \right)}}{\left(x + \cos{\left(x \right)}\right)^{2} + 1} + \sin{\left(x \right)} + \frac{2 \left(\sin{\left(x \right)} - 1\right)^{3}}{\left(x + \cos{\left(x \right)}\right)^{2} + 1}}{\left(x + \cos{\left(x \right)}\right)^{2} + 1}$$