Mister Exam

Other calculators


arctg(1+x^(1/4))^3

Derivative of arctg(1+x^(1/4))^3

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
    3/    4 ___\
atan \1 + \/ x /
$$\operatorname{atan}^{3}{\left(\sqrt[4]{x} + 1 \right)}$$
d /    3/    4 ___\\
--\atan \1 + \/ x //
dx                  
$$\frac{d}{d x} \operatorname{atan}^{3}{\left(\sqrt[4]{x} + 1 \right)}$$
The graph
The first derivative [src]
          2/    4 ___\   
    3*atan \1 + \/ x /   
-------------------------
       /               2\
   3/4 |    /    4 ___\ |
4*x   *\1 + \1 + \/ x / /
$$\frac{3 \operatorname{atan}^{2}{\left(\sqrt[4]{x} + 1 \right)}}{4 x^{\frac{3}{4}} \left(\left(\sqrt[4]{x} + 1\right)^{2} + 1\right)}$$
The second derivative [src]
  /        /    4 ___\                               /    4 ___\     /    4 ___\\                
  |  3*atan\1 + \/ x /              2              2*\1 + \/ x /*atan\1 + \/ x /|     /    4 ___\
3*|- ----------------- + ----------------------- - -----------------------------|*atan\1 + \/ x /
  |          7/4              /               2\           /               2\   |                
  |         x             3/2 |    /    4 ___\ |       3/2 |    /    4 ___\ |   |                
  \                      x   *\1 + \1 + \/ x / /      x   *\1 + \1 + \/ x / /   /                
-------------------------------------------------------------------------------------------------
                                         /               2\                                      
                                         |    /    4 ___\ |                                      
                                      16*\1 + \1 + \/ x / /                                      
$$\frac{3 \left(- \frac{2 \left(\sqrt[4]{x} + 1\right) \operatorname{atan}{\left(\sqrt[4]{x} + 1 \right)}}{x^{\frac{3}{2}} \left(\left(\sqrt[4]{x} + 1\right)^{2} + 1\right)} + \frac{2}{x^{\frac{3}{2}} \left(\left(\sqrt[4]{x} + 1\right)^{2} + 1\right)} - \frac{3 \operatorname{atan}{\left(\sqrt[4]{x} + 1 \right)}}{x^{\frac{7}{4}}}\right) \operatorname{atan}{\left(\sqrt[4]{x} + 1 \right)}}{16 \left(\left(\sqrt[4]{x} + 1\right)^{2} + 1\right)}$$
The third derivative [src]
  /                                                                                                                                                   2                                                   \
  |                                  2/    4 ___\             /    4 ___\              2/    4 ___\        /    4 ___\     /    4 ___\     /    4 ___\      2/    4 ___\          2/    4 ___\ /    4 ___\|
  |           2               21*atan \1 + \/ x /      18*atan\1 + \/ x /        2*atan \1 + \/ x /     12*\1 + \/ x /*atan\1 + \/ x /   8*\1 + \/ x / *atan \1 + \/ x /   18*atan \1 + \/ x /*\1 + \/ x /|
3*|------------------------ + ------------------- - ----------------------- - ----------------------- - ------------------------------ + ------------------------------- + -------------------------------|
  |                       2           11/4               /               2\        /               2\                             2                                 2               /               2\    |
  |     /               2\           x               5/2 |    /    4 ___\ |    9/4 |    /    4 ___\ |           /               2\                /               2\            5/2 |    /    4 ___\ |    |
  | 9/4 |    /    4 ___\ |                          x   *\1 + \1 + \/ x / /   x   *\1 + \1 + \/ x / /       9/4 |    /    4 ___\ |            9/4 |    /    4 ___\ |           x   *\1 + \1 + \/ x / /    |
  \x   *\1 + \1 + \/ x / /                                                                                 x   *\1 + \1 + \/ x / /           x   *\1 + \1 + \/ x / /                                      /
-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
                                                                                              /               2\                                                                                           
                                                                                              |    /    4 ___\ |                                                                                           
                                                                                           64*\1 + \1 + \/ x / /                                                                                           
$$\frac{3 \cdot \left(\frac{18 \left(\sqrt[4]{x} + 1\right) \operatorname{atan}^{2}{\left(\sqrt[4]{x} + 1 \right)}}{x^{\frac{5}{2}} \left(\left(\sqrt[4]{x} + 1\right)^{2} + 1\right)} - \frac{18 \operatorname{atan}{\left(\sqrt[4]{x} + 1 \right)}}{x^{\frac{5}{2}} \left(\left(\sqrt[4]{x} + 1\right)^{2} + 1\right)} + \frac{8 \left(\sqrt[4]{x} + 1\right)^{2} \operatorname{atan}^{2}{\left(\sqrt[4]{x} + 1 \right)}}{x^{\frac{9}{4}} \left(\left(\sqrt[4]{x} + 1\right)^{2} + 1\right)^{2}} - \frac{2 \operatorname{atan}^{2}{\left(\sqrt[4]{x} + 1 \right)}}{x^{\frac{9}{4}} \left(\left(\sqrt[4]{x} + 1\right)^{2} + 1\right)} - \frac{12 \left(\sqrt[4]{x} + 1\right) \operatorname{atan}{\left(\sqrt[4]{x} + 1 \right)}}{x^{\frac{9}{4}} \left(\left(\sqrt[4]{x} + 1\right)^{2} + 1\right)^{2}} + \frac{21 \operatorname{atan}^{2}{\left(\sqrt[4]{x} + 1 \right)}}{x^{\frac{11}{4}}} + \frac{2}{x^{\frac{9}{4}} \left(\left(\sqrt[4]{x} + 1\right)^{2} + 1\right)^{2}}\right)}{64 \left(\left(\sqrt[4]{x} + 1\right)^{2} + 1\right)}$$
The graph
Derivative of arctg(1+x^(1/4))^3