Mister Exam

Other calculators


3x-ln(x+3)^3

Derivative of 3x-ln(x+3)^3

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
         3       
3*x - log (x + 3)
3xlog(x+3)33 x - \log{\left(x + 3 \right)}^{3}
3*x - log(x + 3)^3
Detail solution
  1. Differentiate 3xlog(x+3)33 x - \log{\left(x + 3 \right)}^{3} term by term:

    1. The derivative of a constant times a function is the constant times the derivative of the function.

      1. Apply the power rule: xx goes to 11

      So, the result is: 33

    2. The derivative of a constant times a function is the constant times the derivative of the function.

      1. Let u=log(x+3)u = \log{\left(x + 3 \right)}.

      2. Apply the power rule: u3u^{3} goes to 3u23 u^{2}

      3. Then, apply the chain rule. Multiply by ddxlog(x+3)\frac{d}{d x} \log{\left(x + 3 \right)}:

        1. Let u=x+3u = x + 3.

        2. The derivative of log(u)\log{\left(u \right)} is 1u\frac{1}{u}.

        3. Then, apply the chain rule. Multiply by ddx(x+3)\frac{d}{d x} \left(x + 3\right):

          1. Differentiate x+3x + 3 term by term:

            1. Apply the power rule: xx goes to 11

            2. The derivative of the constant 33 is zero.

            The result is: 11

          The result of the chain rule is:

          1x+3\frac{1}{x + 3}

        The result of the chain rule is:

        3log(x+3)2x+3\frac{3 \log{\left(x + 3 \right)}^{2}}{x + 3}

      So, the result is: 3log(x+3)2x+3- \frac{3 \log{\left(x + 3 \right)}^{2}}{x + 3}

    The result is: 33log(x+3)2x+33 - \frac{3 \log{\left(x + 3 \right)}^{2}}{x + 3}

  2. Now simplify:

    3(xlog(x+3)2+3)x+3\frac{3 \left(x - \log{\left(x + 3 \right)}^{2} + 3\right)}{x + 3}


The answer is:

3(xlog(x+3)2+3)x+3\frac{3 \left(x - \log{\left(x + 3 \right)}^{2} + 3\right)}{x + 3}

The graph
02468-8-6-4-2-1010-500500
The first derivative [src]
         2       
    3*log (x + 3)
3 - -------------
        x + 3    
33log(x+3)2x+33 - \frac{3 \log{\left(x + 3 \right)}^{2}}{x + 3}
The second derivative [src]
3*(-2 + log(3 + x))*log(3 + x)
------------------------------
                  2           
           (3 + x)            
3(log(x+3)2)log(x+3)(x+3)2\frac{3 \left(\log{\left(x + 3 \right)} - 2\right) \log{\left(x + 3 \right)}}{\left(x + 3\right)^{2}}
The third derivative [src]
  /        2                      \
6*\-1 - log (3 + x) + 3*log(3 + x)/
-----------------------------------
                     3             
              (3 + x)              
6(log(x+3)2+3log(x+3)1)(x+3)3\frac{6 \left(- \log{\left(x + 3 \right)}^{2} + 3 \log{\left(x + 3 \right)} - 1\right)}{\left(x + 3\right)^{3}}
The graph
Derivative of 3x-ln(x+3)^3