Mister Exam

Derivative of arctg((2x)^½)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
    /  _____\
atan\\/ 2*x /
$$\operatorname{atan}{\left(\sqrt{2 x} \right)}$$
atan(sqrt(2*x))
The graph
The first derivative [src]
        ___      
      \/ 2       
-----------------
    ___          
2*\/ x *(1 + 2*x)
$$\frac{\sqrt{2}}{2 \sqrt{x} \left(2 x + 1\right)}$$
The second derivative [src]
   ___ /   1       1 \ 
-\/ 2 *|------- + ---| 
       \1 + 2*x   4*x/ 
-----------------------
      ___              
    \/ x *(1 + 2*x)    
$$- \frac{\sqrt{2} \left(\frac{1}{2 x + 1} + \frac{1}{4 x}\right)}{\sqrt{x} \left(2 x + 1\right)}$$
The third derivative [src]
  ___ /    4         3          1     \
\/ 2 *|---------- + ---- + -----------|
      |         2      2   x*(1 + 2*x)|
      \(1 + 2*x)    8*x               /
---------------------------------------
              ___                      
            \/ x *(1 + 2*x)            
$$\frac{\sqrt{2} \left(\frac{4}{\left(2 x + 1\right)^{2}} + \frac{1}{x \left(2 x + 1\right)} + \frac{3}{8 x^{2}}\right)}{\sqrt{x} \left(2 x + 1\right)}$$