Mister Exam

Derivative of arctg(2x)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
atan(2*x)
$$\operatorname{atan}{\left(2 x \right)}$$
atan(2*x)
The graph
The first derivative [src]
   2    
--------
       2
1 + 4*x 
$$\frac{2}{4 x^{2} + 1}$$
The second derivative [src]
   -16*x   
-----------
          2
/       2\ 
\1 + 4*x / 
$$- \frac{16 x}{\left(4 x^{2} + 1\right)^{2}}$$
The third derivative [src]
   /          2  \
   |      16*x   |
16*|-1 + --------|
   |            2|
   \     1 + 4*x /
------------------
             2    
   /       2\     
   \1 + 4*x /     
$$\frac{16 \left(\frac{16 x^{2}}{4 x^{2} + 1} - 1\right)}{\left(4 x^{2} + 1\right)^{2}}$$
The graph
Derivative of arctg(2x)