Mister Exam

Other calculators


sin⁴3x*arctg2x^3

Derivative of sin⁴3x*arctg2x^3

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   43        3     
sin  (x)*atan (2*x)
$$\sin^{43}{\left(x \right)} \operatorname{atan}^{3}{\left(2 x \right)}$$
d /   43        3     \
--\sin  (x)*atan (2*x)/
dx                     
$$\frac{d}{d x} \sin^{43}{\left(x \right)} \operatorname{atan}^{3}{\left(2 x \right)}$$
The graph
The first derivative [src]
      2         43                                   
6*atan (2*x)*sin  (x)          3         42          
--------------------- + 43*atan (2*x)*sin  (x)*cos(x)
              2                                      
       1 + 4*x                                       
$$43 \sin^{42}{\left(x \right)} \cos{\left(x \right)} \operatorname{atan}^{3}{\left(2 x \right)} + \frac{6 \sin^{43}{\left(x \right)} \operatorname{atan}^{2}{\left(2 x \right)}}{4 x^{2} + 1}$$
The second derivative [src]
         /                                               2                                                      \          
   41    |         2      /   2            2   \   24*sin (x)*(-1 + 2*x*atan(2*x))   516*atan(2*x)*cos(x)*sin(x)|          
sin  (x)*|- 43*atan (2*x)*\sin (x) - 42*cos (x)/ - ------------------------------- + ---------------------------|*atan(2*x)
         |                                                             2                              2         |          
         |                                                   /       2\                        1 + 4*x          |          
         \                                                   \1 + 4*x /                                         /          
$$\left(- 43 \left(\sin^{2}{\left(x \right)} - 42 \cos^{2}{\left(x \right)}\right) \operatorname{atan}^{2}{\left(2 x \right)} + \frac{516 \sin{\left(x \right)} \cos{\left(x \right)} \operatorname{atan}{\left(2 x \right)}}{4 x^{2} + 1} - \frac{24 \cdot \left(2 x \operatorname{atan}{\left(2 x \right)} - 1\right) \sin^{2}{\left(x \right)}}{\left(4 x^{2} + 1\right)^{2}}\right) \sin^{41}{\left(x \right)} \operatorname{atan}{\left(2 x \right)}$$
The third derivative [src]
         /                                                                   /                                             2     2     \                                                                                                    \
         |                                                              3    |   1           2        12*x*atan(2*x)   16*x *atan (2*x)|                                                                                                    |
         |                                                        48*sin (x)*|-------- - atan (2*x) - -------------- + ----------------|                                                                                                    |
         |                                                                   |       2                          2                 2    |           2      /   2            2   \                  2                                         |
   40    |         3      /          2             2   \                     \1 + 4*x                    1 + 4*x           1 + 4*x     /   774*atan (2*x)*\sin (x) - 42*cos (x)/*sin(x)   3096*sin (x)*(-1 + 2*x*atan(2*x))*atan(2*x)*cos(x)|
sin  (x)*|- 43*atan (2*x)*\- 1722*cos (x) + 127*sin (x)/*cos(x) + ---------------------------------------------------------------------- - -------------------------------------------- - --------------------------------------------------|
         |                                                                                               2                                                          2                                                  2                    |
         |                                                                                     /       2\                                                    1 + 4*x                                         /       2\                     |
         \                                                                                     \1 + 4*x /                                                                                                    \1 + 4*x /                     /
$$\left(- 43 \cdot \left(127 \sin^{2}{\left(x \right)} - 1722 \cos^{2}{\left(x \right)}\right) \cos{\left(x \right)} \operatorname{atan}^{3}{\left(2 x \right)} - \frac{774 \left(\sin^{2}{\left(x \right)} - 42 \cos^{2}{\left(x \right)}\right) \sin{\left(x \right)} \operatorname{atan}^{2}{\left(2 x \right)}}{4 x^{2} + 1} - \frac{3096 \cdot \left(2 x \operatorname{atan}{\left(2 x \right)} - 1\right) \sin^{2}{\left(x \right)} \cos{\left(x \right)} \operatorname{atan}{\left(2 x \right)}}{\left(4 x^{2} + 1\right)^{2}} + \frac{48 \cdot \left(\frac{16 x^{2} \operatorname{atan}^{2}{\left(2 x \right)}}{4 x^{2} + 1} - \frac{12 x \operatorname{atan}{\left(2 x \right)}}{4 x^{2} + 1} - \operatorname{atan}^{2}{\left(2 x \right)} + \frac{1}{4 x^{2} + 1}\right) \sin^{3}{\left(x \right)}}{\left(4 x^{2} + 1\right)^{2}}\right) \sin^{40}{\left(x \right)}$$
The graph
Derivative of sin⁴3x*arctg2x^3