Mister Exam

Other calculators

Derivative of arcctg(sin(x^2))

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
    /   / 2\\
acot\sin\x //
$$\operatorname{acot}{\left(\sin{\left(x^{2} \right)} \right)}$$
acot(sin(x^2))
The graph
The first derivative [src]
        / 2\
-2*x*cos\x /
------------
       2/ 2\
1 + sin \x /
$$- \frac{2 x \cos{\left(x^{2} \right)}}{\sin^{2}{\left(x^{2} \right)} + 1}$$
The second derivative [src]
  /                              2    2/ 2\    / 2\\
  |     / 2\      2    / 2\   4*x *cos \x /*sin\x /|
2*|- cos\x / + 2*x *sin\x / + ---------------------|
  |                                       2/ 2\    |
  \                                1 + sin \x /    /
----------------------------------------------------
                           2/ 2\                    
                    1 + sin \x /                    
$$\frac{2 \left(2 x^{2} \sin{\left(x^{2} \right)} + \frac{4 x^{2} \sin{\left(x^{2} \right)} \cos^{2}{\left(x^{2} \right)}}{\sin^{2}{\left(x^{2} \right)} + 1} - \cos{\left(x^{2} \right)}\right)}{\sin^{2}{\left(x^{2} \right)} + 1}$$
The third derivative [src]
    /                              2    3/ 2\        2/ 2\    / 2\       2    3/ 2\    2/ 2\       2    2/ 2\    / 2\\
    |     / 2\      2    / 2\   4*x *cos \x /   6*cos \x /*sin\x /   16*x *cos \x /*sin \x /   12*x *sin \x /*cos\x /|
4*x*|3*sin\x / + 2*x *cos\x / + ------------- + ------------------ - ----------------------- - ----------------------|
    |                                   2/ 2\             2/ 2\                        2                   2/ 2\     |
    |                            1 + sin \x /      1 + sin \x /          /       2/ 2\\             1 + sin \x /     |
    \                                                                    \1 + sin \x //                              /
----------------------------------------------------------------------------------------------------------------------
                                                            2/ 2\                                                     
                                                     1 + sin \x /                                                     
$$\frac{4 x \left(2 x^{2} \cos{\left(x^{2} \right)} - \frac{12 x^{2} \sin^{2}{\left(x^{2} \right)} \cos{\left(x^{2} \right)}}{\sin^{2}{\left(x^{2} \right)} + 1} + \frac{4 x^{2} \cos^{3}{\left(x^{2} \right)}}{\sin^{2}{\left(x^{2} \right)} + 1} - \frac{16 x^{2} \sin^{2}{\left(x^{2} \right)} \cos^{3}{\left(x^{2} \right)}}{\left(\sin^{2}{\left(x^{2} \right)} + 1\right)^{2}} + 3 \sin{\left(x^{2} \right)} + \frac{6 \sin{\left(x^{2} \right)} \cos^{2}{\left(x^{2} \right)}}{\sin^{2}{\left(x^{2} \right)} + 1}\right)}{\sin^{2}{\left(x^{2} \right)} + 1}$$