The second derivative
[src]
2
/ x \ / x \
x 2 2*\-2 + 2 *log(2)/ *\2 - 2*x/
- 2 *log (2) + ------------------------------
2
/ x \
1 + \2 - 2*x/
---------------------------------------------
2
/ x \
1 + \2 - 2*x/
$$\frac{- 2^{x} \log{\left(2 \right)}^{2} + \frac{2 \left(2^{x} - 2 x\right) \left(2^{x} \log{\left(2 \right)} - 2\right)^{2}}{\left(2^{x} - 2 x\right)^{2} + 1}}{\left(2^{x} - 2 x\right)^{2} + 1}$$
The third derivative
[src]
3 3 2
/ x \ / x \ / x \ x 2 / x \ / x \
x 3 2*\-2 + 2 *log(2)/ 8*\-2 + 2 *log(2)/ *\2 - 2*x/ 6*2 *log (2)*\-2 + 2 *log(2)/*\2 - 2*x/
- 2 *log (2) + ------------------- - ------------------------------- + ----------------------------------------
2 2 2
/ x \ / 2\ / x \
1 + \2 - 2*x/ | / x \ | 1 + \2 - 2*x/
\1 + \2 - 2*x/ /
---------------------------------------------------------------------------------------------------------------
2
/ x \
1 + \2 - 2*x/
$$\frac{\frac{6 \cdot 2^{x} \left(2^{x} - 2 x\right) \left(2^{x} \log{\left(2 \right)} - 2\right) \log{\left(2 \right)}^{2}}{\left(2^{x} - 2 x\right)^{2} + 1} - 2^{x} \log{\left(2 \right)}^{3} - \frac{8 \left(2^{x} - 2 x\right)^{2} \left(2^{x} \log{\left(2 \right)} - 2\right)^{3}}{\left(\left(2^{x} - 2 x\right)^{2} + 1\right)^{2}} + \frac{2 \left(2^{x} \log{\left(2 \right)} - 2\right)^{3}}{\left(2^{x} - 2 x\right)^{2} + 1}}{\left(2^{x} - 2 x\right)^{2} + 1}$$