Mister Exam

Other calculators

Derivative of atan(y+2-y^2)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
    /         2\
atan\y + 2 - y /
$$\operatorname{atan}{\left(- y^{2} + \left(y + 2\right) \right)}$$
atan(y + 2 - y^2)
The graph
The first derivative [src]
     1 - 2*y     
-----------------
                2
    /         2\ 
1 + \y + 2 - y / 
$$\frac{1 - 2 y}{\left(- y^{2} + \left(y + 2\right)\right)^{2} + 1}$$
The second derivative [src]
   /              2 /         2\\
   |    (-1 + 2*y) *\2 + y - y /|
-2*|1 + ------------------------|
   |                       2    |
   |           /         2\     |
   \       1 + \2 + y - y /     /
---------------------------------
                        2        
            /         2\         
        1 + \2 + y - y /         
$$- \frac{2 \left(\frac{\left(2 y - 1\right)^{2} \left(- y^{2} + y + 2\right)}{\left(- y^{2} + y + 2\right)^{2} + 1} + 1\right)}{\left(- y^{2} + y + 2\right)^{2} + 1}$$
The third derivative [src]
             /                                                           2\
             |                                             2 /         2\ |
             |                2            2   4*(-1 + 2*y) *\2 + y - y / |
2*(-1 + 2*y)*|-12 + (-1 + 2*y)  - 6*y + 6*y  - ---------------------------|
             |                                                      2     |
             |                                          /         2\      |
             \                                      1 + \2 + y - y /      /
---------------------------------------------------------------------------
                                               2                           
                            /                2\                            
                            |    /         2\ |                            
                            \1 + \2 + y - y / /                            
$$\frac{2 \left(2 y - 1\right) \left(6 y^{2} - 6 y + \left(2 y - 1\right)^{2} - \frac{4 \left(2 y - 1\right)^{2} \left(- y^{2} + y + 2\right)^{2}}{\left(- y^{2} + y + 2\right)^{2} + 1} - 12\right)}{\left(\left(- y^{2} + y + 2\right)^{2} + 1\right)^{2}}$$