The second derivative
[src]
/ 2*atan(x) 2 x*log(3 + 2*x)\
2*|- ---------- + ------------------ - --------------|
| 2 / 2\ 2 |
| (3 + 2*x) \1 + x /*(3 + 2*x) / 2\ |
\ \1 + x / /
$$2 \left(- \frac{x \log{\left(2 x + 3 \right)}}{\left(x^{2} + 1\right)^{2}} + \frac{2}{\left(2 x + 3\right) \left(x^{2} + 1\right)} - \frac{2 \operatorname{atan}{\left(x \right)}}{\left(2 x + 3\right)^{2}}\right)$$
The third derivative
[src]
/ / 2 \ \
| | 4*x | |
| |-1 + ------|*log(3 + 2*x) |
| | 2| |
| 6 8*atan(x) \ 1 + x / 6*x |
2*|- ------------------- + ---------- + -------------------------- - -------------------|
| / 2\ 2 3 2 2 |
| \1 + x /*(3 + 2*x) (3 + 2*x) / 2\ / 2\ |
\ \1 + x / \1 + x / *(3 + 2*x)/
$$2 \left(- \frac{6 x}{\left(2 x + 3\right) \left(x^{2} + 1\right)^{2}} + \frac{\left(\frac{4 x^{2}}{x^{2} + 1} - 1\right) \log{\left(2 x + 3 \right)}}{\left(x^{2} + 1\right)^{2}} - \frac{6}{\left(2 x + 3\right)^{2} \left(x^{2} + 1\right)} + \frac{8 \operatorname{atan}{\left(x \right)}}{\left(2 x + 3\right)^{3}}\right)$$