Mister Exam

Other calculators

Derivative of arcsin(√x)-√(x-x^2)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
                 ________
    /  ___\     /      2 
asin\\/ x / - \/  x - x  
$$- \sqrt{- x^{2} + x} + \operatorname{asin}{\left(\sqrt{x} \right)}$$
asin(sqrt(x)) - sqrt(x - x^2)
The graph
The first derivative [src]
        1             1/2 - x  
----------------- - -----------
    ___   _______      ________
2*\/ x *\/ 1 - x      /      2 
                    \/  x - x  
$$- \frac{\frac{1}{2} - x}{\sqrt{- x^{2} + x}} + \frac{1}{2 \sqrt{x} \sqrt{1 - x}}$$
The second derivative [src]
                                                                    2   
      1                1                   1              (-1 + 2*x)    
------------- - ---------------- + ------------------ + ----------------
  ___________      3/2   _______       ___        3/2                3/2
\/ x*(1 - x)    4*x   *\/ 1 - x    4*\/ x *(1 - x)      4*(x*(1 - x))   
$$\frac{1}{\sqrt{x \left(1 - x\right)}} + \frac{\left(2 x - 1\right)^{2}}{4 \left(x \left(1 - x\right)\right)^{\frac{3}{2}}} + \frac{1}{4 \sqrt{x} \left(1 - x\right)^{\frac{3}{2}}} - \frac{1}{4 x^{\frac{3}{2}} \sqrt{1 - x}}$$
The third derivative [src]
                                                                    3                  
         2                3                 3           3*(-1 + 2*x)     12*(-1 + 2*x) 
- --------------- + -------------- + ---------------- + -------------- + --------------
   3/2        3/2    5/2   _______     ___        5/2              5/2              3/2
  x   *(1 - x)      x   *\/ 1 - x    \/ x *(1 - x)      (x*(1 - x))      (x*(1 - x))   
---------------------------------------------------------------------------------------
                                           8                                           
$$\frac{\frac{12 \left(2 x - 1\right)}{\left(x \left(1 - x\right)\right)^{\frac{3}{2}}} + \frac{3 \left(2 x - 1\right)^{3}}{\left(x \left(1 - x\right)\right)^{\frac{5}{2}}} + \frac{3}{\sqrt{x} \left(1 - x\right)^{\frac{5}{2}}} - \frac{2}{x^{\frac{3}{2}} \left(1 - x\right)^{\frac{3}{2}}} + \frac{3}{x^{\frac{5}{2}} \sqrt{1 - x}}}{8}$$