The second derivative
[src]
2
1 1 1 (-1 + 2*x)
------------- - ---------------- + ------------------ + ----------------
___________ 3/2 _______ ___ 3/2 3/2
\/ x*(1 - x) 4*x *\/ 1 - x 4*\/ x *(1 - x) 4*(x*(1 - x))
$$\frac{1}{\sqrt{x \left(1 - x\right)}} + \frac{\left(2 x - 1\right)^{2}}{4 \left(x \left(1 - x\right)\right)^{\frac{3}{2}}} + \frac{1}{4 \sqrt{x} \left(1 - x\right)^{\frac{3}{2}}} - \frac{1}{4 x^{\frac{3}{2}} \sqrt{1 - x}}$$
The third derivative
[src]
3
2 3 3 3*(-1 + 2*x) 12*(-1 + 2*x)
- --------------- + -------------- + ---------------- + -------------- + --------------
3/2 3/2 5/2 _______ ___ 5/2 5/2 3/2
x *(1 - x) x *\/ 1 - x \/ x *(1 - x) (x*(1 - x)) (x*(1 - x))
---------------------------------------------------------------------------------------
8
$$\frac{\frac{12 \left(2 x - 1\right)}{\left(x \left(1 - x\right)\right)^{\frac{3}{2}}} + \frac{3 \left(2 x - 1\right)^{3}}{\left(x \left(1 - x\right)\right)^{\frac{5}{2}}} + \frac{3}{\sqrt{x} \left(1 - x\right)^{\frac{5}{2}}} - \frac{2}{x^{\frac{3}{2}} \left(1 - x\right)^{\frac{3}{2}}} + \frac{3}{x^{\frac{5}{2}} \sqrt{1 - x}}}{8}$$