The first derivative
[src]
10*asin(5*x)
--------------
___________
/ 2
\/ 1 - 25*x
$$\frac{10 \operatorname{asin}{\left(5 x \right)}}{\sqrt{- 25 x^{2} + 1}}$$
The second derivative
[src]
/ 1 5*x*asin(5*x) \
50*|- ---------- + --------------|
| 2 3/2|
| -1 + 25*x / 2\ |
\ \1 - 25*x / /
$$50 \cdot \left(\frac{5 x \operatorname{asin}{\left(5 x \right)}}{\left(- 25 x^{2} + 1\right)^{\frac{3}{2}}} - \frac{1}{25 x^{2} - 1}\right)$$
The third derivative
[src]
/ 2 \
| asin(5*x) 15*x 75*x *asin(5*x)|
250*|-------------- + ------------- + ---------------|
| 3/2 2 5/2|
|/ 2\ / 2\ / 2\ |
\\1 - 25*x / \-1 + 25*x / \1 - 25*x / /
$$250 \cdot \left(\frac{15 x}{\left(25 x^{2} - 1\right)^{2}} + \frac{75 x^{2} \operatorname{asin}{\left(5 x \right)}}{\left(- 25 x^{2} + 1\right)^{\frac{5}{2}}} + \frac{\operatorname{asin}{\left(5 x \right)}}{\left(- 25 x^{2} + 1\right)^{\frac{3}{2}}}\right)$$