Mister Exam

Other calculators


arcsin^2*(5x)

Derivative of arcsin^2*(5x)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
    2     
asin (5*x)
$$\operatorname{asin}^{2}{\left(5 x \right)}$$
d /    2     \
--\asin (5*x)/
dx            
$$\frac{d}{d x} \operatorname{asin}^{2}{\left(5 x \right)}$$
The graph
The first derivative [src]
 10*asin(5*x) 
--------------
   ___________
  /         2 
\/  1 - 25*x  
$$\frac{10 \operatorname{asin}{\left(5 x \right)}}{\sqrt{- 25 x^{2} + 1}}$$
The second derivative [src]
   /      1        5*x*asin(5*x) \
50*|- ---------- + --------------|
   |           2              3/2|
   |  -1 + 25*x    /        2\   |
   \               \1 - 25*x /   /
$$50 \cdot \left(\frac{5 x \operatorname{asin}{\left(5 x \right)}}{\left(- 25 x^{2} + 1\right)^{\frac{3}{2}}} - \frac{1}{25 x^{2} - 1}\right)$$
The third derivative [src]
    /                                     2          \
    |  asin(5*x)           15*x       75*x *asin(5*x)|
250*|-------------- + ------------- + ---------------|
    |           3/2               2               5/2|
    |/        2\      /         2\     /        2\   |
    \\1 - 25*x /      \-1 + 25*x /     \1 - 25*x /   /
$$250 \cdot \left(\frac{15 x}{\left(25 x^{2} - 1\right)^{2}} + \frac{75 x^{2} \operatorname{asin}{\left(5 x \right)}}{\left(- 25 x^{2} + 1\right)^{\frac{5}{2}}} + \frac{\operatorname{asin}{\left(5 x \right)}}{\left(- 25 x^{2} + 1\right)^{\frac{3}{2}}}\right)$$
The graph
Derivative of arcsin^2*(5x)