Mister Exam

Other calculators

Derivative of arcsin(sqrt(2x-x^2))

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
    /   __________\
    |  /        2 |
asin\\/  2*x - x  /
$$\operatorname{asin}{\left(\sqrt{- x^{2} + 2 x} \right)}$$
asin(sqrt(2*x - x^2))
The graph
The first derivative [src]
             1 - x             
-------------------------------
   __________    ______________
  /        2    /      2       
\/  2*x - x  *\/  1 + x  - 2*x 
$$\frac{1 - x}{\sqrt{- x^{2} + 2 x} \sqrt{x^{2} - 2 x + 1}}$$
The second derivative [src]
               2             2 
       (-1 + x)      (-1 + x)  
 -1 + ------------ - --------- 
           2         x*(2 - x) 
      1 + x  - 2*x             
-------------------------------
                 ______________
  ___________   /      2       
\/ x*(2 - x) *\/  1 + x  - 2*x 
$$\frac{\frac{\left(x - 1\right)^{2}}{x^{2} - 2 x + 1} - 1 - \frac{\left(x - 1\right)^{2}}{x \left(2 - x\right)}}{\sqrt{x \left(2 - x\right)} \sqrt{x^{2} - 2 x + 1}}$$
The third derivative [src]
         /                                       2               2                   2       \
         |     3             3         3*(-1 + x)      3*(-1 + x)          2*(-1 + x)        |
(-1 + x)*|------------ - --------- - --------------- - ----------- + ------------------------|
         |     2         x*(2 - x)                 2    2        2             /     2      \|
         |1 + x  - 2*x               /     2      \    x *(2 - x)    x*(2 - x)*\1 + x  - 2*x/|
         \                           \1 + x  - 2*x/                                          /
----------------------------------------------------------------------------------------------
                                                ______________                                
                                 ___________   /      2                                       
                               \/ x*(2 - x) *\/  1 + x  - 2*x                                 
$$\frac{\left(x - 1\right) \left(- \frac{3 \left(x - 1\right)^{2}}{\left(x^{2} - 2 x + 1\right)^{2}} + \frac{3}{x^{2} - 2 x + 1} + \frac{2 \left(x - 1\right)^{2}}{x \left(2 - x\right) \left(x^{2} - 2 x + 1\right)} - \frac{3}{x \left(2 - x\right)} - \frac{3 \left(x - 1\right)^{2}}{x^{2} \left(2 - x\right)^{2}}\right)}{\sqrt{x \left(2 - x\right)} \sqrt{x^{2} - 2 x + 1}}$$