The second derivative
[src]
2 2
(-1 + x) (-1 + x)
-1 + ------------ - ---------
2 x*(2 - x)
1 + x - 2*x
-------------------------------
______________
___________ / 2
\/ x*(2 - x) *\/ 1 + x - 2*x
$$\frac{\frac{\left(x - 1\right)^{2}}{x^{2} - 2 x + 1} - 1 - \frac{\left(x - 1\right)^{2}}{x \left(2 - x\right)}}{\sqrt{x \left(2 - x\right)} \sqrt{x^{2} - 2 x + 1}}$$
The third derivative
[src]
/ 2 2 2 \
| 3 3 3*(-1 + x) 3*(-1 + x) 2*(-1 + x) |
(-1 + x)*|------------ - --------- - --------------- - ----------- + ------------------------|
| 2 x*(2 - x) 2 2 2 / 2 \|
|1 + x - 2*x / 2 \ x *(2 - x) x*(2 - x)*\1 + x - 2*x/|
\ \1 + x - 2*x/ /
----------------------------------------------------------------------------------------------
______________
___________ / 2
\/ x*(2 - x) *\/ 1 + x - 2*x
$$\frac{\left(x - 1\right) \left(- \frac{3 \left(x - 1\right)^{2}}{\left(x^{2} - 2 x + 1\right)^{2}} + \frac{3}{x^{2} - 2 x + 1} + \frac{2 \left(x - 1\right)^{2}}{x \left(2 - x\right) \left(x^{2} - 2 x + 1\right)} - \frac{3}{x \left(2 - x\right)} - \frac{3 \left(x - 1\right)^{2}}{x^{2} \left(2 - x\right)^{2}}\right)}{\sqrt{x \left(2 - x\right)} \sqrt{x^{2} - 2 x + 1}}$$