Mister Exam

Other calculators


arcsin(1-x^4)^3

Derivative of arcsin(1-x^4)^3

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
    3/     4\
asin \1 - x /
$$\operatorname{asin}^{3}{\left(1 - x^{4} \right)}$$
The graph
The first derivative [src]
     3     2/     4\
-12*x *asin \1 - x /
--------------------
    _______________ 
   /             2  
  /      /     4\   
\/   1 - \1 - x /   
$$- \frac{12 x^{3} \operatorname{asin}^{2}{\left(1 - x^{4} \right)}}{\sqrt{1 - \left(1 - x^{4}\right)^{2}}}$$
The second derivative [src]
      /          /      4\              4           4 /      4\     /      4\\              
    2 |    3*asin\-1 + x /           8*x         4*x *\-1 + x /*asin\-1 + x /|     /      4\
12*x *|- ------------------- + --------------- - ----------------------------|*asin\-1 + x /
      |      _______________                 2                       3/2     |              
      |     /             2         /      4\         /            2\        |              
      |    /      /     4\     -1 + \-1 + x /         |    /     4\ |        |              
      \  \/   1 - \1 - x /                            \1 - \1 - x / /        /              
$$12 x^{2} \left(\frac{8 x^{4}}{\left(x^{4} - 1\right)^{2} - 1} - \frac{4 x^{4} \left(x^{4} - 1\right) \operatorname{asin}{\left(x^{4} - 1 \right)}}{\left(1 - \left(1 - x^{4}\right)^{2}\right)^{\frac{3}{2}}} - \frac{3 \operatorname{asin}{\left(x^{4} - 1 \right)}}{\sqrt{1 - \left(1 - x^{4}\right)^{2}}}\right) \operatorname{asin}{\left(x^{4} - 1 \right)}$$
The third derivative [src]
     /                                                                                                                                        2                                                \
     |            8                  2/      4\       8     2/      4\       4     /      4\       8 /      4\     /      4\       8 /      4\      2/      4\       4     2/      4\ /      4\|
     |        16*x             3*asin \-1 + x /    8*x *asin \-1 + x /   36*x *asin\-1 + x /   48*x *\-1 + x /*asin\-1 + x /   24*x *\-1 + x / *asin \-1 + x /   18*x *asin \-1 + x /*\-1 + x /|
24*x*|- ------------------ - ------------------- - ------------------- + ------------------- - ----------------------------- - ------------------------------- - ------------------------------|
     |                 3/2       _______________                   3/2                   2                            2                              5/2                              3/2      |
     |  /            2\         /             2     /            2\             /      4\            /              2\                /            2\                  /            2\         |
     |  |    /     4\ |        /      /     4\      |    /     4\ |        -1 + \-1 + x /            |     /      4\ |                |    /     4\ |                  |    /     4\ |         |
     \  \1 - \1 - x / /      \/   1 - \1 - x /      \1 - \1 - x / /                                  \-1 + \-1 + x / /                \1 - \1 - x / /                  \1 - \1 - x / /         /
$$24 x \left(- \frac{48 x^{8} \left(x^{4} - 1\right) \operatorname{asin}{\left(x^{4} - 1 \right)}}{\left(\left(x^{4} - 1\right)^{2} - 1\right)^{2}} - \frac{8 x^{8} \operatorname{asin}^{2}{\left(x^{4} - 1 \right)}}{\left(1 - \left(1 - x^{4}\right)^{2}\right)^{\frac{3}{2}}} - \frac{16 x^{8}}{\left(1 - \left(1 - x^{4}\right)^{2}\right)^{\frac{3}{2}}} - \frac{24 x^{8} \left(x^{4} - 1\right)^{2} \operatorname{asin}^{2}{\left(x^{4} - 1 \right)}}{\left(1 - \left(1 - x^{4}\right)^{2}\right)^{\frac{5}{2}}} + \frac{36 x^{4} \operatorname{asin}{\left(x^{4} - 1 \right)}}{\left(x^{4} - 1\right)^{2} - 1} - \frac{18 x^{4} \left(x^{4} - 1\right) \operatorname{asin}^{2}{\left(x^{4} - 1 \right)}}{\left(1 - \left(1 - x^{4}\right)^{2}\right)^{\frac{3}{2}}} - \frac{3 \operatorname{asin}^{2}{\left(x^{4} - 1 \right)}}{\sqrt{1 - \left(1 - x^{4}\right)^{2}}}\right)$$
The graph
Derivative of arcsin(1-x^4)^3