Mister Exam

Derivative of arcsin(ln5x)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
asin(log(5*x))
$$\operatorname{asin}{\left(\log{\left(5 x \right)} \right)}$$
asin(log(5*x))
The graph
The first derivative [src]
         1          
--------------------
     _______________
    /        2      
x*\/  1 - log (5*x) 
$$\frac{1}{x \sqrt{1 - \log{\left(5 x \right)}^{2}}}$$
The second derivative [src]
          log(5*x)   
  -1 + ------------- 
              2      
       1 - log (5*x) 
---------------------
      _______________
 2   /        2      
x *\/  1 - log (5*x) 
$$\frac{-1 + \frac{\log{\left(5 x \right)}}{1 - \log{\left(5 x \right)}^{2}}}{x^{2} \sqrt{1 - \log{\left(5 x \right)}^{2}}}$$
The third derivative [src]
                                           2        
          1           3*log(5*x)      3*log (5*x)   
2 + ------------- - ------------- + ----------------
           2               2                       2
    1 - log (5*x)   1 - log (5*x)   /       2     \ 
                                    \1 - log (5*x)/ 
----------------------------------------------------
                     _______________                
                3   /        2                      
               x *\/  1 - log (5*x)                 
$$\frac{2 - \frac{3 \log{\left(5 x \right)}}{1 - \log{\left(5 x \right)}^{2}} + \frac{1}{1 - \log{\left(5 x \right)}^{2}} + \frac{3 \log{\left(5 x \right)}^{2}}{\left(1 - \log{\left(5 x \right)}^{2}\right)^{2}}}{x^{3} \sqrt{1 - \log{\left(5 x \right)}^{2}}}$$
3-я производная [src]
                                           2        
          1           3*log(5*x)      3*log (5*x)   
2 + ------------- - ------------- + ----------------
           2               2                       2
    1 - log (5*x)   1 - log (5*x)   /       2     \ 
                                    \1 - log (5*x)/ 
----------------------------------------------------
                     _______________                
                3   /        2                      
               x *\/  1 - log (5*x)                 
$$\frac{2 - \frac{3 \log{\left(5 x \right)}}{1 - \log{\left(5 x \right)}^{2}} + \frac{1}{1 - \log{\left(5 x \right)}^{2}} + \frac{3 \log{\left(5 x \right)}^{2}}{\left(1 - \log{\left(5 x \right)}^{2}\right)^{2}}}{x^{3} \sqrt{1 - \log{\left(5 x \right)}^{2}}}$$