The first derivative
[src]
1
--------------------
_______________
/ 2
x*\/ 1 - log (5*x)
$$\frac{1}{x \sqrt{1 - \log{\left(5 x \right)}^{2}}}$$
The second derivative
[src]
log(5*x)
-1 + -------------
2
1 - log (5*x)
---------------------
_______________
2 / 2
x *\/ 1 - log (5*x)
$$\frac{-1 + \frac{\log{\left(5 x \right)}}{1 - \log{\left(5 x \right)}^{2}}}{x^{2} \sqrt{1 - \log{\left(5 x \right)}^{2}}}$$
The third derivative
[src]
2
1 3*log(5*x) 3*log (5*x)
2 + ------------- - ------------- + ----------------
2 2 2
1 - log (5*x) 1 - log (5*x) / 2 \
\1 - log (5*x)/
----------------------------------------------------
_______________
3 / 2
x *\/ 1 - log (5*x)
$$\frac{2 - \frac{3 \log{\left(5 x \right)}}{1 - \log{\left(5 x \right)}^{2}} + \frac{1}{1 - \log{\left(5 x \right)}^{2}} + \frac{3 \log{\left(5 x \right)}^{2}}{\left(1 - \log{\left(5 x \right)}^{2}\right)^{2}}}{x^{3} \sqrt{1 - \log{\left(5 x \right)}^{2}}}$$
2
1 3*log(5*x) 3*log (5*x)
2 + ------------- - ------------- + ----------------
2 2 2
1 - log (5*x) 1 - log (5*x) / 2 \
\1 - log (5*x)/
----------------------------------------------------
_______________
3 / 2
x *\/ 1 - log (5*x)
$$\frac{2 - \frac{3 \log{\left(5 x \right)}}{1 - \log{\left(5 x \right)}^{2}} + \frac{1}{1 - \log{\left(5 x \right)}^{2}} + \frac{3 \log{\left(5 x \right)}^{2}}{\left(1 - \log{\left(5 x \right)}^{2}\right)^{2}}}{x^{3} \sqrt{1 - \log{\left(5 x \right)}^{2}}}$$