Mister Exam

Derivative of asin(2*x)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
asin(2*x)
$$\operatorname{asin}{\left(2 x \right)}$$
asin(2*x)
The graph
The first derivative [src]
      2      
-------------
   __________
  /        2 
\/  1 - 4*x  
$$\frac{2}{\sqrt{1 - 4 x^{2}}}$$
The second derivative [src]
     8*x     
-------------
          3/2
/       2\   
\1 - 4*x /   
$$\frac{8 x}{\left(1 - 4 x^{2}\right)^{\frac{3}{2}}}$$
The third derivative [src]
  /         2  \
  |     12*x   |
8*|1 + --------|
  |           2|
  \    1 - 4*x /
----------------
           3/2  
 /       2\     
 \1 - 4*x /     
$$\frac{8 \left(\frac{12 x^{2}}{1 - 4 x^{2}} + 1\right)}{\left(1 - 4 x^{2}\right)^{\frac{3}{2}}}$$
The graph
Derivative of asin(2*x)