Mister Exam

Derivative of asin(4x)+bcos(4x)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
asin(4*x) + b*cos(4*x)
$$b \cos{\left(4 x \right)} + \operatorname{asin}{\left(4 x \right)}$$
asin(4*x) + b*cos(4*x)
The first derivative [src]
      4                      
-------------- - 4*b*sin(4*x)
   ___________               
  /         2                
\/  1 - 16*x                 
$$- 4 b \sin{\left(4 x \right)} + \frac{4}{\sqrt{1 - 16 x^{2}}}$$
The second derivative [src]
   /                   4*x      \
16*|-b*cos(4*x) + --------------|
   |                         3/2|
   |              /        2\   |
   \              \1 - 16*x /   /
$$16 \left(- b \cos{\left(4 x \right)} + \frac{4 x}{\left(1 - 16 x^{2}\right)^{\frac{3}{2}}}\right)$$
The third derivative [src]
   /                                      2     \
   |      1                           48*x      |
64*|-------------- + b*sin(4*x) + --------------|
   |           3/2                           5/2|
   |/        2\                   /        2\   |
   \\1 - 16*x /                   \1 - 16*x /   /
$$64 \left(b \sin{\left(4 x \right)} + \frac{48 x^{2}}{\left(1 - 16 x^{2}\right)^{\frac{5}{2}}} + \frac{1}{\left(1 - 16 x^{2}\right)^{\frac{3}{2}}}\right)$$