Mister Exam

Derivative of x(asin4x+bcos4x)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
x*(asin(4*x) + b*cos(4*x))
$$x \left(b \cos{\left(4 x \right)} + \operatorname{asin}{\left(4 x \right)}\right)$$
x*(asin(4*x) + b*cos(4*x))
The first derivative [src]
               /      4                      \            
b*cos(4*x) + x*|-------------- - 4*b*sin(4*x)| + asin(4*x)
               |   ___________               |            
               |  /         2                |            
               \\/  1 - 16*x                 /            
$$b \cos{\left(4 x \right)} + x \left(- 4 b \sin{\left(4 x \right)} + \frac{4}{\sqrt{1 - 16 x^{2}}}\right) + \operatorname{asin}{\left(4 x \right)}$$
The second derivative [src]
  /      1                           /                  4*x      \\
8*|-------------- - b*sin(4*x) - 2*x*|b*cos(4*x) - --------------||
  |   ___________                    |                        3/2||
  |  /         2                     |             /        2\   ||
  \\/  1 - 16*x                      \             \1 - 16*x /   //
$$8 \left(- b \sin{\left(4 x \right)} - 2 x \left(b \cos{\left(4 x \right)} - \frac{4 x}{\left(1 - 16 x^{2}\right)^{\frac{3}{2}}}\right) + \frac{1}{\sqrt{1 - 16 x^{2}}}\right)$$
The third derivative [src]
   /                    /                                      2     \                 \
   |                    |      1                           48*x      |        12*x     |
16*|-3*b*cos(4*x) + 4*x*|-------------- + b*sin(4*x) + --------------| + --------------|
   |                    |           3/2                           5/2|              3/2|
   |                    |/        2\                   /        2\   |   /        2\   |
   \                    \\1 - 16*x /                   \1 - 16*x /   /   \1 - 16*x /   /
$$16 \left(- 3 b \cos{\left(4 x \right)} + 4 x \left(b \sin{\left(4 x \right)} + \frac{48 x^{2}}{\left(1 - 16 x^{2}\right)^{\frac{5}{2}}} + \frac{1}{\left(1 - 16 x^{2}\right)^{\frac{3}{2}}}\right) + \frac{12 x}{\left(1 - 16 x^{2}\right)^{\frac{3}{2}}}\right)$$