The first derivative
[src]
/ 4 \
b*cos(4*x) + x*|-------------- - 4*b*sin(4*x)| + asin(4*x)
| ___________ |
| / 2 |
\\/ 1 - 16*x /
$$b \cos{\left(4 x \right)} + x \left(- 4 b \sin{\left(4 x \right)} + \frac{4}{\sqrt{1 - 16 x^{2}}}\right) + \operatorname{asin}{\left(4 x \right)}$$
The second derivative
[src]
/ 1 / 4*x \\
8*|-------------- - b*sin(4*x) - 2*x*|b*cos(4*x) - --------------||
| ___________ | 3/2||
| / 2 | / 2\ ||
\\/ 1 - 16*x \ \1 - 16*x / //
$$8 \left(- b \sin{\left(4 x \right)} - 2 x \left(b \cos{\left(4 x \right)} - \frac{4 x}{\left(1 - 16 x^{2}\right)^{\frac{3}{2}}}\right) + \frac{1}{\sqrt{1 - 16 x^{2}}}\right)$$
The third derivative
[src]
/ / 2 \ \
| | 1 48*x | 12*x |
16*|-3*b*cos(4*x) + 4*x*|-------------- + b*sin(4*x) + --------------| + --------------|
| | 3/2 5/2| 3/2|
| |/ 2\ / 2\ | / 2\ |
\ \\1 - 16*x / \1 - 16*x / / \1 - 16*x / /
$$16 \left(- 3 b \cos{\left(4 x \right)} + 4 x \left(b \sin{\left(4 x \right)} + \frac{48 x^{2}}{\left(1 - 16 x^{2}\right)^{\frac{5}{2}}} + \frac{1}{\left(1 - 16 x^{2}\right)^{\frac{3}{2}}}\right) + \frac{12 x}{\left(1 - 16 x^{2}\right)^{\frac{3}{2}}}\right)$$