Mister Exam

Derivative of arcsin(4x-1)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
asin(4*x - 1)
$$\operatorname{asin}{\left(4 x - 1 \right)}$$
d                
--(asin(4*x - 1))
dx               
$$\frac{d}{d x} \operatorname{asin}{\left(4 x - 1 \right)}$$
The graph
The first derivative [src]
         4         
-------------------
   ________________
  /              2 
\/  1 - (4*x - 1)  
$$\frac{4}{\sqrt{- \left(4 x - 1\right)^{2} + 1}}$$
The second derivative [src]
   16*(-1 + 4*x)    
--------------------
                 3/2
/              2\   
\1 - (-1 + 4*x) /   
$$\frac{16 \cdot \left(4 x - 1\right)}{\left(- \left(4 x - 1\right)^{2} + 1\right)^{\frac{3}{2}}}$$
The third derivative [src]
   /                 2 \
   |     3*(-1 + 4*x)  |
64*|1 + ---------------|
   |                  2|
   \    1 - (-1 + 4*x) /
------------------------
                   3/2  
  /              2\     
  \1 - (-1 + 4*x) /     
$$\frac{64 \cdot \left(\frac{3 \left(4 x - 1\right)^{2}}{- \left(4 x - 1\right)^{2} + 1} + 1\right)}{\left(- \left(4 x - 1\right)^{2} + 1\right)^{\frac{3}{2}}}$$
The graph
Derivative of arcsin(4x-1)