The second derivative
[src]
62 / 63 (-1 + x)*asin(-1 + x)\
-320*asin (-1 + x)*|-------------- - ---------------------|
| 2 3/2 |
|-1 + (-1 + x) / 2\ |
\ \1 - (-1 + x) / /
$$- 320 \left(\frac{63}{\left(x - 1\right)^{2} - 1} - \frac{\left(x - 1\right) \operatorname{asin}{\left(x - 1 \right)}}{\left(1 - \left(x - 1\right)^{2}\right)^{\frac{3}{2}}}\right) \operatorname{asin}^{62}{\left(x - 1 \right)}$$
The third derivative
[src]
/ 2 2 2 \
61 | 3906 asin (-1 + x) 3*(-1 + x) *asin (-1 + x) 189*(-1 + x)*asin(-1 + x)|
320*asin (-1 + x)*|------------------ + ------------------ + ------------------------- + -------------------------|
| 3/2 3/2 5/2 2 |
|/ 2\ / 2\ / 2\ / 2\ |
\\1 - (-1 + x) / \1 - (-1 + x) / \1 - (-1 + x) / \-1 + (-1 + x) / /
$$320 \left(\frac{189 \left(x - 1\right) \operatorname{asin}{\left(x - 1 \right)}}{\left(\left(x - 1\right)^{2} - 1\right)^{2}} + \frac{\operatorname{asin}^{2}{\left(x - 1 \right)}}{\left(1 - \left(x - 1\right)^{2}\right)^{\frac{3}{2}}} + \frac{3906}{\left(1 - \left(x - 1\right)^{2}\right)^{\frac{3}{2}}} + \frac{3 \left(x - 1\right)^{2} \operatorname{asin}^{2}{\left(x - 1 \right)}}{\left(1 - \left(x - 1\right)^{2}\right)^{\frac{5}{2}}}\right) \operatorname{asin}^{61}{\left(x - 1 \right)}$$