Mister Exam

Other calculators

Derivative of 5arcsin^4(x-1)^3

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
      64       
5*asin  (x - 1)
$$5 \operatorname{asin}^{64}{\left(x - 1 \right)}$$
5*asin(x - 1)^64
The graph
The first derivative [src]
        63       
320*asin  (x - 1)
-----------------
   ______________
  /            2 
\/  1 - (x - 1)  
$$\frac{320 \operatorname{asin}^{63}{\left(x - 1 \right)}}{\sqrt{1 - \left(x - 1\right)^{2}}}$$
The second derivative [src]
         62         /      63         (-1 + x)*asin(-1 + x)\
-320*asin  (-1 + x)*|-------------- - ---------------------|
                    |             2                    3/2 |
                    |-1 + (-1 + x)      /            2\    |
                    \                   \1 - (-1 + x) /    /
$$- 320 \left(\frac{63}{\left(x - 1\right)^{2} - 1} - \frac{\left(x - 1\right) \operatorname{asin}{\left(x - 1 \right)}}{\left(1 - \left(x - 1\right)^{2}\right)^{\frac{3}{2}}}\right) \operatorname{asin}^{62}{\left(x - 1 \right)}$$
The third derivative [src]
                   /                           2                        2     2                                    \
        61         |       3906            asin (-1 + x)      3*(-1 + x) *asin (-1 + x)   189*(-1 + x)*asin(-1 + x)|
320*asin  (-1 + x)*|------------------ + ------------------ + ------------------------- + -------------------------|
                   |               3/2                  3/2                      5/2                          2    |
                   |/            2\      /            2\          /            2\             /             2\     |
                   \\1 - (-1 + x) /      \1 - (-1 + x) /          \1 - (-1 + x) /             \-1 + (-1 + x) /     /
$$320 \left(\frac{189 \left(x - 1\right) \operatorname{asin}{\left(x - 1 \right)}}{\left(\left(x - 1\right)^{2} - 1\right)^{2}} + \frac{\operatorname{asin}^{2}{\left(x - 1 \right)}}{\left(1 - \left(x - 1\right)^{2}\right)^{\frac{3}{2}}} + \frac{3906}{\left(1 - \left(x - 1\right)^{2}\right)^{\frac{3}{2}}} + \frac{3 \left(x - 1\right)^{2} \operatorname{asin}^{2}{\left(x - 1 \right)}}{\left(1 - \left(x - 1\right)^{2}\right)^{\frac{5}{2}}}\right) \operatorname{asin}^{61}{\left(x - 1 \right)}$$