Mister Exam

Derivative of arcsin(2x-1)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
asin(2*x - 1)
$$\operatorname{asin}{\left(2 x - 1 \right)}$$
asin(2*x - 1)
The graph
The first derivative [src]
         2         
-------------------
   ________________
  /              2 
\/  1 - (2*x - 1)  
$$\frac{2}{\sqrt{1 - \left(2 x - 1\right)^{2}}}$$
The second derivative [src]
    4*(-1 + 2*x)    
--------------------
                 3/2
/              2\   
\1 - (-1 + 2*x) /   
$$\frac{4 \left(2 x - 1\right)}{\left(1 - \left(2 x - 1\right)^{2}\right)^{\frac{3}{2}}}$$
The third derivative [src]
  /                 2 \
  |     3*(-1 + 2*x)  |
8*|1 + ---------------|
  |                  2|
  \    1 - (-1 + 2*x) /
-----------------------
                   3/2 
  /              2\    
  \1 - (-1 + 2*x) /    
$$\frac{8 \left(1 + \frac{3 \left(2 x - 1\right)^{2}}{1 - \left(2 x - 1\right)^{2}}\right)}{\left(1 - \left(2 x - 1\right)^{2}\right)^{\frac{3}{2}}}$$
The graph
Derivative of arcsin(2x-1)