Mister Exam

Other calculators

Derivative of arcsin(2x-1/sqrt(2))

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
    /        1  \
asin|2*x - -----|
    |        ___|
    \      \/ 2 /
$$\operatorname{asin}{\left(2 x - \frac{1}{\sqrt{2}} \right)}$$
asin(2*x - 1/sqrt(2))
The graph
The first derivative [src]
            2             
--------------------------
      ____________________
     /                  2 
    /      /        1  \  
   /   1 - |2*x - -----|  
  /        |        ___|  
\/         \      \/ 2 /  
$$\frac{2}{\sqrt{1 - \left(2 x - \frac{1}{\sqrt{2}}\right)^{2}}}$$
The second derivative [src]
      /    ___      \    
    2*\- \/ 2  + 4*x/    
-------------------------
                      3/2
/                   2\   
|    /    ___      \ |   
|    \- \/ 2  + 4*x/ |   
|1 - ----------------|   
\           4        /   
$$\frac{2 \left(4 x - \sqrt{2}\right)}{\left(1 - \frac{\left(4 x - \sqrt{2}\right)^{2}}{4}\right)^{\frac{3}{2}}}$$
The third derivative [src]
  /                      2 \
  |       /    ___      \  |
  |     3*\- \/ 2  + 4*x/  |
2*|4 + --------------------|
  |                       2|
  |        /    ___      \ |
  |        \- \/ 2  + 4*x/ |
  |    1 - ----------------|
  \               4        /
----------------------------
                       3/2  
 /                   2\     
 |    /    ___      \ |     
 |    \- \/ 2  + 4*x/ |     
 |1 - ----------------|     
 \           4        /     
$$\frac{2 \left(4 + \frac{3 \left(4 x - \sqrt{2}\right)^{2}}{1 - \frac{\left(4 x - \sqrt{2}\right)^{2}}{4}}\right)}{\left(1 - \frac{\left(4 x - \sqrt{2}\right)^{2}}{4}\right)^{\frac{3}{2}}}$$