Mister Exam

Other calculators


arctanh(4x^(3)+3x-2)

Derivative of arctanh(4x^(3)+3x-2)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
     /   3          \
atanh\4*x  + 3*x - 2/
$$\operatorname{atanh}{\left(4 x^{3} + 3 x - 2 \right)}$$
d /     /   3          \\
--\atanh\4*x  + 3*x - 2//
dx                       
$$\frac{d}{d x} \operatorname{atanh}{\left(4 x^{3} + 3 x - 2 \right)}$$
The graph
The first derivative [src]
              2      
      3 + 12*x       
---------------------
                    2
    /   3          \ 
1 - \4*x  + 3*x - 2/ 
$$\frac{12 x^{2} + 3}{- \left(4 x^{3} + 3 x - 2\right)^{2} + 1}$$
The second derivative [src]
  /                   2                  \
  |         /       2\  /              3\|
  |       3*\1 + 4*x / *\-2 + 3*x + 4*x /|
6*|-4*x + -------------------------------|
  |                                 2    |
  |                /              3\     |
  \           -1 + \-2 + 3*x + 4*x /     /
------------------------------------------
                               2          
              /              3\           
         -1 + \-2 + 3*x + 4*x /           
$$\frac{6 \left(\frac{3 \left(4 x^{2} + 1\right)^{2} \cdot \left(4 x^{3} + 3 x - 2\right)}{\left(4 x^{3} + 3 x - 2\right)^{2} - 1} - 4 x\right)}{\left(4 x^{3} + 3 x - 2\right)^{2} - 1}$$
The third derivative [src]
  /                      3                     3                  2                                    \
  |            /       2\            /       2\  /              3\         /       2\ /              3\|
  |          9*\1 + 4*x /         36*\1 + 4*x / *\-2 + 3*x + 4*x /    72*x*\1 + 4*x /*\-2 + 3*x + 4*x /|
6*|-4 + ----------------------- - --------------------------------- + ---------------------------------|
  |                           2                                2                                 2     |
  |          /              3\        /                      2\                 /              3\      |
  |     -1 + \-2 + 3*x + 4*x /        |     /              3\ |            -1 + \-2 + 3*x + 4*x /      |
  \                                   \-1 + \-2 + 3*x + 4*x / /                                        /
--------------------------------------------------------------------------------------------------------
                                                              2                                         
                                             /              3\                                          
                                        -1 + \-2 + 3*x + 4*x /                                          
$$\frac{6 \cdot \left(- \frac{36 \left(4 x^{2} + 1\right)^{3} \left(4 x^{3} + 3 x - 2\right)^{2}}{\left(\left(4 x^{3} + 3 x - 2\right)^{2} - 1\right)^{2}} + \frac{72 x \left(4 x^{2} + 1\right) \left(4 x^{3} + 3 x - 2\right)}{\left(4 x^{3} + 3 x - 2\right)^{2} - 1} + \frac{9 \left(4 x^{2} + 1\right)^{3}}{\left(4 x^{3} + 3 x - 2\right)^{2} - 1} - 4\right)}{\left(4 x^{3} + 3 x - 2\right)^{2} - 1}$$
The graph
Derivative of arctanh(4x^(3)+3x-2)