The first derivative
[src]
2
3 + 12*x
---------------------
2
/ 3 \
1 - \4*x + 3*x - 2/
$$\frac{12 x^{2} + 3}{- \left(4 x^{3} + 3 x - 2\right)^{2} + 1}$$
The second derivative
[src]
/ 2 \
| / 2\ / 3\|
| 3*\1 + 4*x / *\-2 + 3*x + 4*x /|
6*|-4*x + -------------------------------|
| 2 |
| / 3\ |
\ -1 + \-2 + 3*x + 4*x / /
------------------------------------------
2
/ 3\
-1 + \-2 + 3*x + 4*x /
$$\frac{6 \left(\frac{3 \left(4 x^{2} + 1\right)^{2} \cdot \left(4 x^{3} + 3 x - 2\right)}{\left(4 x^{3} + 3 x - 2\right)^{2} - 1} - 4 x\right)}{\left(4 x^{3} + 3 x - 2\right)^{2} - 1}$$
The third derivative
[src]
/ 3 3 2 \
| / 2\ / 2\ / 3\ / 2\ / 3\|
| 9*\1 + 4*x / 36*\1 + 4*x / *\-2 + 3*x + 4*x / 72*x*\1 + 4*x /*\-2 + 3*x + 4*x /|
6*|-4 + ----------------------- - --------------------------------- + ---------------------------------|
| 2 2 2 |
| / 3\ / 2\ / 3\ |
| -1 + \-2 + 3*x + 4*x / | / 3\ | -1 + \-2 + 3*x + 4*x / |
\ \-1 + \-2 + 3*x + 4*x / / /
--------------------------------------------------------------------------------------------------------
2
/ 3\
-1 + \-2 + 3*x + 4*x /
$$\frac{6 \cdot \left(- \frac{36 \left(4 x^{2} + 1\right)^{3} \left(4 x^{3} + 3 x - 2\right)^{2}}{\left(\left(4 x^{3} + 3 x - 2\right)^{2} - 1\right)^{2}} + \frac{72 x \left(4 x^{2} + 1\right) \left(4 x^{3} + 3 x - 2\right)}{\left(4 x^{3} + 3 x - 2\right)^{2} - 1} + \frac{9 \left(4 x^{2} + 1\right)^{3}}{\left(4 x^{3} + 3 x - 2\right)^{2} - 1} - 4\right)}{\left(4 x^{3} + 3 x - 2\right)^{2} - 1}$$