Mister Exam

Other calculators


acos(2*x)^(3)

Derivative of acos(2*x)^(3)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
    3     
acos (2*x)
$$\operatorname{acos}^{3}{\left(2 x \right)}$$
d /    3     \
--\acos (2*x)/
dx            
$$\frac{d}{d x} \operatorname{acos}^{3}{\left(2 x \right)}$$
The graph
The first derivative [src]
       2     
-6*acos (2*x)
-------------
   __________
  /        2 
\/  1 - 4*x  
$$- \frac{6 \operatorname{acos}^{2}{\left(2 x \right)}}{\sqrt{1 - 4 x^{2}}}$$
The second derivative [src]
    /    1        x*acos(2*x) \          
-24*|--------- + -------------|*acos(2*x)
    |        2             3/2|          
    |-1 + 4*x    /       2\   |          
    \            \1 - 4*x /   /          
$$- 24 \left(\frac{x \operatorname{acos}{\left(2 x \right)}}{\left(1 - 4 x^{2}\right)^{\frac{3}{2}}} + \frac{1}{4 x^{2} - 1}\right) \operatorname{acos}{\left(2 x \right)}$$
The third derivative [src]
   /                        2             2     2                      \
   |        2           acos (2*x)    12*x *acos (2*x)   12*x*acos(2*x)|
24*|- ------------- - ------------- - ---------------- + --------------|
   |            3/2             3/2              5/2                 2 |
   |  /       2\      /       2\       /       2\         /        2\  |
   \  \1 - 4*x /      \1 - 4*x /       \1 - 4*x /         \-1 + 4*x /  /
$$24 \left(- \frac{12 x^{2} \operatorname{acos}^{2}{\left(2 x \right)}}{\left(1 - 4 x^{2}\right)^{\frac{5}{2}}} + \frac{12 x \operatorname{acos}{\left(2 x \right)}}{\left(4 x^{2} - 1\right)^{2}} - \frac{\operatorname{acos}^{2}{\left(2 x \right)}}{\left(1 - 4 x^{2}\right)^{\frac{3}{2}}} - \frac{2}{\left(1 - 4 x^{2}\right)^{\frac{3}{2}}}\right)$$
The graph
Derivative of acos(2*x)^(3)