The first derivative
[src]
2
-6*acos (2*x)
-------------
__________
/ 2
\/ 1 - 4*x
$$- \frac{6 \operatorname{acos}^{2}{\left(2 x \right)}}{\sqrt{1 - 4 x^{2}}}$$
The second derivative
[src]
/ 1 x*acos(2*x) \
-24*|--------- + -------------|*acos(2*x)
| 2 3/2|
|-1 + 4*x / 2\ |
\ \1 - 4*x / /
$$- 24 \left(\frac{x \operatorname{acos}{\left(2 x \right)}}{\left(1 - 4 x^{2}\right)^{\frac{3}{2}}} + \frac{1}{4 x^{2} - 1}\right) \operatorname{acos}{\left(2 x \right)}$$
The third derivative
[src]
/ 2 2 2 \
| 2 acos (2*x) 12*x *acos (2*x) 12*x*acos(2*x)|
24*|- ------------- - ------------- - ---------------- + --------------|
| 3/2 3/2 5/2 2 |
| / 2\ / 2\ / 2\ / 2\ |
\ \1 - 4*x / \1 - 4*x / \1 - 4*x / \-1 + 4*x / /
$$24 \left(- \frac{12 x^{2} \operatorname{acos}^{2}{\left(2 x \right)}}{\left(1 - 4 x^{2}\right)^{\frac{5}{2}}} + \frac{12 x \operatorname{acos}{\left(2 x \right)}}{\left(4 x^{2} - 1\right)^{2}} - \frac{\operatorname{acos}^{2}{\left(2 x \right)}}{\left(1 - 4 x^{2}\right)^{\frac{3}{2}}} - \frac{2}{\left(1 - 4 x^{2}\right)^{\frac{3}{2}}}\right)$$