The first derivative
[src]
2 2*asin(x)
- ------------- + -----------
__________ ________
/ 2 / 2
\/ 1 - 4*x \/ 1 - x
$$\frac{2 \operatorname{asin}{\left(x \right)}}{\sqrt{- x^{2} + 1}} - \frac{2}{\sqrt{- 4 x^{2} + 1}}$$
The second derivative
[src]
/ 1 4*x x*asin(x) \
2*|- ------- - ------------- + -----------|
| 2 3/2 3/2|
| -1 + x / 2\ / 2\ |
\ \1 - 4*x / \1 - x / /
$$2 \left(\frac{x \operatorname{asin}{\left(x \right)}}{\left(- x^{2} + 1\right)^{\frac{3}{2}}} - \frac{1}{x^{2} - 1} - \frac{4 x}{\left(- 4 x^{2} + 1\right)^{\frac{3}{2}}}\right)$$
The third derivative
[src]
/ 2 2 \
| 4 asin(x) 48*x 3*x 3*x *asin(x)|
2*|- ------------- + ----------- - ------------- + ---------- + ------------|
| 3/2 3/2 5/2 2 5/2 |
| / 2\ / 2\ / 2\ / 2\ / 2\ |
\ \1 - 4*x / \1 - x / \1 - 4*x / \-1 + x / \1 - x / /
$$2 \cdot \left(\frac{3 x}{\left(x^{2} - 1\right)^{2}} + \frac{3 x^{2} \operatorname{asin}{\left(x \right)}}{\left(- x^{2} + 1\right)^{\frac{5}{2}}} + \frac{\operatorname{asin}{\left(x \right)}}{\left(- x^{2} + 1\right)^{\frac{3}{2}}} - \frac{48 x^{2}}{\left(- 4 x^{2} + 1\right)^{\frac{5}{2}}} - \frac{4}{\left(- 4 x^{2} + 1\right)^{\frac{3}{2}}}\right)$$