Mister Exam

Other calculators


1/x^3

Derivative of 1/x^3

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  1 
1*--
   3
  x 
11x31 \cdot \frac{1}{x^{3}}
d /  1 \
--|1*--|
dx|   3|
  \  x /
ddx11x3\frac{d}{d x} 1 \cdot \frac{1}{x^{3}}
Detail solution
  1. Apply the quotient rule, which is:

    ddxf(x)g(x)=f(x)ddxg(x)+g(x)ddxf(x)g2(x)\frac{d}{d x} \frac{f{\left(x \right)}}{g{\left(x \right)}} = \frac{- f{\left(x \right)} \frac{d}{d x} g{\left(x \right)} + g{\left(x \right)} \frac{d}{d x} f{\left(x \right)}}{g^{2}{\left(x \right)}}

    f(x)=1f{\left(x \right)} = 1 and g(x)=x3g{\left(x \right)} = x^{3}.

    To find ddxf(x)\frac{d}{d x} f{\left(x \right)}:

    1. The derivative of the constant 11 is zero.

    To find ddxg(x)\frac{d}{d x} g{\left(x \right)}:

    1. Apply the power rule: x3x^{3} goes to 3x23 x^{2}

    Now plug in to the quotient rule:

    3x4- \frac{3}{x^{4}}


The answer is:

3x4- \frac{3}{x^{4}}

The graph
02468-8-6-4-2-1010-5000050000
The first derivative [src]
-3  
----
   3
x*x 
3xx3- \frac{3}{x x^{3}}
The second derivative [src]
12
--
 5
x 
12x5\frac{12}{x^{5}}
The third derivative [src]
-60 
----
  6 
 x  
60x6- \frac{60}{x^{6}}
The graph
Derivative of 1/x^3