Mister Exam

Other calculators

Derivative of ((5x^2)-x+4)/(x-1)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   2        
5*x  - x + 4
------------
   x - 1    
(5x2x)+4x1\frac{\left(5 x^{2} - x\right) + 4}{x - 1}
(5*x^2 - x + 4)/(x - 1)
Detail solution
  1. Apply the quotient rule, which is:

    ddxf(x)g(x)=f(x)ddxg(x)+g(x)ddxf(x)g2(x)\frac{d}{d x} \frac{f{\left(x \right)}}{g{\left(x \right)}} = \frac{- f{\left(x \right)} \frac{d}{d x} g{\left(x \right)} + g{\left(x \right)} \frac{d}{d x} f{\left(x \right)}}{g^{2}{\left(x \right)}}

    f(x)=5x2x+4f{\left(x \right)} = 5 x^{2} - x + 4 and g(x)=x1g{\left(x \right)} = x - 1.

    To find ddxf(x)\frac{d}{d x} f{\left(x \right)}:

    1. Differentiate 5x2x+45 x^{2} - x + 4 term by term:

      1. The derivative of the constant 44 is zero.

      2. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: xx goes to 11

        So, the result is: 1-1

      3. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: x2x^{2} goes to 2x2 x

        So, the result is: 10x10 x

      The result is: 10x110 x - 1

    To find ddxg(x)\frac{d}{d x} g{\left(x \right)}:

    1. Differentiate x1x - 1 term by term:

      1. The derivative of the constant 1-1 is zero.

      2. Apply the power rule: xx goes to 11

      The result is: 11

    Now plug in to the quotient rule:

    5x2+x+(x1)(10x1)4(x1)2\frac{- 5 x^{2} + x + \left(x - 1\right) \left(10 x - 1\right) - 4}{\left(x - 1\right)^{2}}

  2. Now simplify:

    5x210x3x22x+1\frac{5 x^{2} - 10 x - 3}{x^{2} - 2 x + 1}


The answer is:

5x210x3x22x+1\frac{5 x^{2} - 10 x - 3}{x^{2} - 2 x + 1}

The graph
02468-8-6-4-2-1010-10001000
The first derivative [src]
               2        
-1 + 10*x   5*x  - x + 4
--------- - ------------
  x - 1              2  
              (x - 1)   
10x1x1(5x2x)+4(x1)2\frac{10 x - 1}{x - 1} - \frac{\left(5 x^{2} - x\right) + 4}{\left(x - 1\right)^{2}}
The second derivative [src]
  /               2            \
  |    4 - x + 5*x    -1 + 10*x|
2*|5 + ------------ - ---------|
  |             2       -1 + x |
  \     (-1 + x)               /
--------------------------------
             -1 + x             
2(510x1x1+5x2x+4(x1)2)x1\frac{2 \left(5 - \frac{10 x - 1}{x - 1} + \frac{5 x^{2} - x + 4}{\left(x - 1\right)^{2}}\right)}{x - 1}
The third derivative [src]
  /                            2\
  |     -1 + 10*x   4 - x + 5*x |
6*|-5 + --------- - ------------|
  |       -1 + x             2  |
  \                  (-1 + x)   /
---------------------------------
                    2            
            (-1 + x)             
6(5+10x1x15x2x+4(x1)2)(x1)2\frac{6 \left(-5 + \frac{10 x - 1}{x - 1} - \frac{5 x^{2} - x + 4}{\left(x - 1\right)^{2}}\right)}{\left(x - 1\right)^{2}}