5*x - 3 ----------- 3 sin (x) - x
(5*x - 3)/(sin(x)^3 - x)
Apply the quotient rule, which is:
and .
To find :
Differentiate term by term:
The derivative of the constant is zero.
The derivative of a constant times a function is the constant times the derivative of the function.
Apply the power rule: goes to
So, the result is:
The result is:
To find :
Differentiate term by term:
Let .
Apply the power rule: goes to
Then, apply the chain rule. Multiply by :
The derivative of sine is cosine:
The result of the chain rule is:
The derivative of a constant times a function is the constant times the derivative of the function.
Apply the power rule: goes to
So, the result is:
The result is:
Now plug in to the quotient rule:
Now simplify:
The answer is:
/ 2 \
5 \1 - 3*sin (x)*cos(x)/*(5*x - 3)
----------- + --------------------------------
3 2
sin (x) - x / 3 \
\sin (x) - x/
/ 2 \
| / 2 \ |
| 2*\-1 + 3*sin (x)*cos(x)/ / 2 2 \ | 2
10 + (-3 + 5*x)*|- -------------------------- + 3*\sin (x) - 2*cos (x)/*sin(x)| - 30*sin (x)*cos(x)
| 3 |
\ x - sin (x) /
---------------------------------------------------------------------------------------------------
2
/ 3 \
\x - sin (x)/
/ / 3 \ 2 \
| | / 2 \ / 2 \ / 2 2 \ | / 2 \ |
| |/ 2 2 \ 2*\-1 + 3*sin (x)*cos(x)/ 6*\-1 + 3*sin (x)*cos(x)/*\sin (x) - 2*cos (x)/*sin(x)| 10*\-1 + 3*sin (x)*cos(x)/ / 2 2 \ |
3*|(-3 + 5*x)*|\- 2*cos (x) + 7*sin (x)/*cos(x) - -------------------------- + ------------------------------------------------------| - --------------------------- + 15*\sin (x) - 2*cos (x)/*sin(x)|
| | 2 3 | 3 |
| | / 3 \ x - sin (x) | x - sin (x) |
\ \ \x - sin (x)/ / /
-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
2
/ 3 \
\x - sin (x)/