Mister Exam

Other calculators

Derivative of (5x-3)/(sin^3-x)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  5*x - 3  
-----------
   3       
sin (x) - x
$$\frac{5 x - 3}{- x + \sin^{3}{\left(x \right)}}$$
(5*x - 3)/(sin(x)^3 - x)
Detail solution
  1. Apply the quotient rule, which is:

    and .

    To find :

    1. Differentiate term by term:

      1. The derivative of the constant is zero.

      2. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: goes to

        So, the result is:

      The result is:

    To find :

    1. Differentiate term by term:

      1. Let .

      2. Apply the power rule: goes to

      3. Then, apply the chain rule. Multiply by :

        1. The derivative of sine is cosine:

        The result of the chain rule is:

      4. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: goes to

        So, the result is:

      The result is:

    Now plug in to the quotient rule:

  2. Now simplify:


The answer is:

The graph
The first derivative [src]
              /         2          \          
     5        \1 - 3*sin (x)*cos(x)/*(5*x - 3)
----------- + --------------------------------
   3                                2         
sin (x) - x            /   3       \          
                       \sin (x) - x/          
$$\frac{5}{- x + \sin^{3}{\left(x \right)}} + \frac{\left(5 x - 3\right) \left(- 3 \sin^{2}{\left(x \right)} \cos{\left(x \right)} + 1\right)}{\left(- x + \sin^{3}{\left(x \right)}\right)^{2}}$$
The second derivative [src]
                /                           2                                 \                    
                |    /          2          \                                  |                    
                |  2*\-1 + 3*sin (x)*cos(x)/      /   2           2   \       |         2          
10 + (-3 + 5*x)*|- -------------------------- + 3*\sin (x) - 2*cos (x)/*sin(x)| - 30*sin (x)*cos(x)
                |                3                                            |                    
                \         x - sin (x)                                         /                    
---------------------------------------------------------------------------------------------------
                                                        2                                          
                                           /       3   \                                           
                                           \x - sin (x)/                                           
$$\frac{\left(5 x - 3\right) \left(3 \left(\sin^{2}{\left(x \right)} - 2 \cos^{2}{\left(x \right)}\right) \sin{\left(x \right)} - \frac{2 \left(3 \sin^{2}{\left(x \right)} \cos{\left(x \right)} - 1\right)^{2}}{x - \sin^{3}{\left(x \right)}}\right) - 30 \sin^{2}{\left(x \right)} \cos{\left(x \right)} + 10}{\left(x - \sin^{3}{\left(x \right)}\right)^{2}}$$
The third derivative [src]
  /           /                                                            3                                                         \                             2                                  \
  |           |                                     /          2          \      /          2          \ /   2           2   \       |      /          2          \                                   |
  |           |/       2           2   \          2*\-1 + 3*sin (x)*cos(x)/    6*\-1 + 3*sin (x)*cos(x)/*\sin (x) - 2*cos (x)/*sin(x)|   10*\-1 + 3*sin (x)*cos(x)/       /   2           2   \       |
3*|(-3 + 5*x)*|\- 2*cos (x) + 7*sin (x)/*cos(x) - -------------------------- + ------------------------------------------------------| - --------------------------- + 15*\sin (x) - 2*cos (x)/*sin(x)|
  |           |                                                      2                                     3                         |                  3                                             |
  |           |                                         /       3   \                               x - sin (x)                      |           x - sin (x)                                          |
  \           \                                         \x - sin (x)/                                                                /                                                                /
-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
                                                                                                          2                                                                                            
                                                                                             /       3   \                                                                                             
                                                                                             \x - sin (x)/                                                                                             
$$\frac{3 \left(\left(5 x - 3\right) \left(\left(7 \sin^{2}{\left(x \right)} - 2 \cos^{2}{\left(x \right)}\right) \cos{\left(x \right)} + \frac{6 \left(3 \sin^{2}{\left(x \right)} \cos{\left(x \right)} - 1\right) \left(\sin^{2}{\left(x \right)} - 2 \cos^{2}{\left(x \right)}\right) \sin{\left(x \right)}}{x - \sin^{3}{\left(x \right)}} - \frac{2 \left(3 \sin^{2}{\left(x \right)} \cos{\left(x \right)} - 1\right)^{3}}{\left(x - \sin^{3}{\left(x \right)}\right)^{2}}\right) + 15 \left(\sin^{2}{\left(x \right)} - 2 \cos^{2}{\left(x \right)}\right) \sin{\left(x \right)} - \frac{10 \left(3 \sin^{2}{\left(x \right)} \cos{\left(x \right)} - 1\right)^{2}}{x - \sin^{3}{\left(x \right)}}\right)}{\left(x - \sin^{3}{\left(x \right)}\right)^{2}}$$