Mister Exam

Other calculators

Derivative of 5cos(4x^2)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
     /   2\
5*cos\4*x /
5cos(4x2)5 \cos{\left(4 x^{2} \right)}
5*cos(4*x^2)
Detail solution
  1. The derivative of a constant times a function is the constant times the derivative of the function.

    1. Let u=4x2u = 4 x^{2}.

    2. The derivative of cosine is negative sine:

      dducos(u)=sin(u)\frac{d}{d u} \cos{\left(u \right)} = - \sin{\left(u \right)}

    3. Then, apply the chain rule. Multiply by ddx4x2\frac{d}{d x} 4 x^{2}:

      1. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: x2x^{2} goes to 2x2 x

        So, the result is: 8x8 x

      The result of the chain rule is:

      8xsin(4x2)- 8 x \sin{\left(4 x^{2} \right)}

    So, the result is: 40xsin(4x2)- 40 x \sin{\left(4 x^{2} \right)}


The answer is:

40xsin(4x2)- 40 x \sin{\left(4 x^{2} \right)}

The graph
02468-8-6-4-2-1010-10001000
The first derivative [src]
         /   2\
-40*x*sin\4*x /
40xsin(4x2)- 40 x \sin{\left(4 x^{2} \right)}
The second derivative [src]
    /   2    /   2\      /   2\\
-40*\8*x *cos\4*x / + sin\4*x //
40(8x2cos(4x2)+sin(4x2))- 40 \left(8 x^{2} \cos{\left(4 x^{2} \right)} + \sin{\left(4 x^{2} \right)}\right)
The third derivative [src]
      /       /   2\      2    /   2\\
320*x*\- 3*cos\4*x / + 8*x *sin\4*x //
320x(8x2sin(4x2)3cos(4x2))320 x \left(8 x^{2} \sin{\left(4 x^{2} \right)} - 3 \cos{\left(4 x^{2} \right)}\right)