Mister Exam

Other calculators

Derivative of 4ctg((x/2)+(pi/6))

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
     /x   pi\
4*cot|- + --|
     \2   6 /
4cot(x2+π6)4 \cot{\left(\frac{x}{2} + \frac{\pi}{6} \right)}
4*cot(x/2 + pi/6)
Detail solution
  1. The derivative of a constant times a function is the constant times the derivative of the function.

    1. There are multiple ways to do this derivative.

      Method #1

      1. Rewrite the function to be differentiated:

        cot(x2+π6)=1tan(x2+π6)\cot{\left(\frac{x}{2} + \frac{\pi}{6} \right)} = \frac{1}{\tan{\left(\frac{x}{2} + \frac{\pi}{6} \right)}}

      2. Let u=tan(x2+π6)u = \tan{\left(\frac{x}{2} + \frac{\pi}{6} \right)}.

      3. Apply the power rule: 1u\frac{1}{u} goes to 1u2- \frac{1}{u^{2}}

      4. Then, apply the chain rule. Multiply by ddxtan(x2+π6)\frac{d}{d x} \tan{\left(\frac{x}{2} + \frac{\pi}{6} \right)}:

        1. Rewrite the function to be differentiated:

          tan(x2+π6)=sin(x2+π6)cos(x2+π6)\tan{\left(\frac{x}{2} + \frac{\pi}{6} \right)} = \frac{\sin{\left(\frac{x}{2} + \frac{\pi}{6} \right)}}{\cos{\left(\frac{x}{2} + \frac{\pi}{6} \right)}}

        2. Apply the quotient rule, which is:

          ddxf(x)g(x)=f(x)ddxg(x)+g(x)ddxf(x)g2(x)\frac{d}{d x} \frac{f{\left(x \right)}}{g{\left(x \right)}} = \frac{- f{\left(x \right)} \frac{d}{d x} g{\left(x \right)} + g{\left(x \right)} \frac{d}{d x} f{\left(x \right)}}{g^{2}{\left(x \right)}}

          f(x)=sin(x2+π6)f{\left(x \right)} = \sin{\left(\frac{x}{2} + \frac{\pi}{6} \right)} and g(x)=cos(x2+π6)g{\left(x \right)} = \cos{\left(\frac{x}{2} + \frac{\pi}{6} \right)}.

          To find ddxf(x)\frac{d}{d x} f{\left(x \right)}:

          1. Let u=x2+π6u = \frac{x}{2} + \frac{\pi}{6}.

          2. The derivative of sine is cosine:

            ddusin(u)=cos(u)\frac{d}{d u} \sin{\left(u \right)} = \cos{\left(u \right)}

          3. Then, apply the chain rule. Multiply by ddx(x2+π6)\frac{d}{d x} \left(\frac{x}{2} + \frac{\pi}{6}\right):

            1. Differentiate x2+π6\frac{x}{2} + \frac{\pi}{6} term by term:

              1. The derivative of a constant times a function is the constant times the derivative of the function.

                1. Apply the power rule: xx goes to 11

                So, the result is: 12\frac{1}{2}

              2. The derivative of the constant π6\frac{\pi}{6} is zero.

              The result is: 12\frac{1}{2}

            The result of the chain rule is:

            cos(x2+π6)2\frac{\cos{\left(\frac{x}{2} + \frac{\pi}{6} \right)}}{2}

          To find ddxg(x)\frac{d}{d x} g{\left(x \right)}:

          1. Let u=x2+π6u = \frac{x}{2} + \frac{\pi}{6}.

          2. The derivative of cosine is negative sine:

            dducos(u)=sin(u)\frac{d}{d u} \cos{\left(u \right)} = - \sin{\left(u \right)}

          3. Then, apply the chain rule. Multiply by ddx(x2+π6)\frac{d}{d x} \left(\frac{x}{2} + \frac{\pi}{6}\right):

            1. Differentiate x2+π6\frac{x}{2} + \frac{\pi}{6} term by term:

              1. The derivative of a constant times a function is the constant times the derivative of the function.

                1. Apply the power rule: xx goes to 11

                So, the result is: 12\frac{1}{2}

              2. The derivative of the constant π6\frac{\pi}{6} is zero.

              The result is: 12\frac{1}{2}

            The result of the chain rule is:

            sin(x2+π6)2- \frac{\sin{\left(\frac{x}{2} + \frac{\pi}{6} \right)}}{2}

          Now plug in to the quotient rule:

          sin2(x2+π6)2+cos2(x2+π6)2cos2(x2+π6)\frac{\frac{\sin^{2}{\left(\frac{x}{2} + \frac{\pi}{6} \right)}}{2} + \frac{\cos^{2}{\left(\frac{x}{2} + \frac{\pi}{6} \right)}}{2}}{\cos^{2}{\left(\frac{x}{2} + \frac{\pi}{6} \right)}}

        The result of the chain rule is:

        sin2(x2+π6)2+cos2(x2+π6)2cos2(x2+π6)tan2(x2+π6)- \frac{\frac{\sin^{2}{\left(\frac{x}{2} + \frac{\pi}{6} \right)}}{2} + \frac{\cos^{2}{\left(\frac{x}{2} + \frac{\pi}{6} \right)}}{2}}{\cos^{2}{\left(\frac{x}{2} + \frac{\pi}{6} \right)} \tan^{2}{\left(\frac{x}{2} + \frac{\pi}{6} \right)}}

      Method #2

      1. Rewrite the function to be differentiated:

        cot(x2+π6)=cos(x2+π6)sin(x2+π6)\cot{\left(\frac{x}{2} + \frac{\pi}{6} \right)} = \frac{\cos{\left(\frac{x}{2} + \frac{\pi}{6} \right)}}{\sin{\left(\frac{x}{2} + \frac{\pi}{6} \right)}}

      2. Apply the quotient rule, which is:

        ddxf(x)g(x)=f(x)ddxg(x)+g(x)ddxf(x)g2(x)\frac{d}{d x} \frac{f{\left(x \right)}}{g{\left(x \right)}} = \frac{- f{\left(x \right)} \frac{d}{d x} g{\left(x \right)} + g{\left(x \right)} \frac{d}{d x} f{\left(x \right)}}{g^{2}{\left(x \right)}}

        f(x)=cos(x2+π6)f{\left(x \right)} = \cos{\left(\frac{x}{2} + \frac{\pi}{6} \right)} and g(x)=sin(x2+π6)g{\left(x \right)} = \sin{\left(\frac{x}{2} + \frac{\pi}{6} \right)}.

        To find ddxf(x)\frac{d}{d x} f{\left(x \right)}:

        1. Let u=x2+π6u = \frac{x}{2} + \frac{\pi}{6}.

        2. The derivative of cosine is negative sine:

          dducos(u)=sin(u)\frac{d}{d u} \cos{\left(u \right)} = - \sin{\left(u \right)}

        3. Then, apply the chain rule. Multiply by ddx(x2+π6)\frac{d}{d x} \left(\frac{x}{2} + \frac{\pi}{6}\right):

          1. Differentiate x2+π6\frac{x}{2} + \frac{\pi}{6} term by term:

            1. The derivative of a constant times a function is the constant times the derivative of the function.

              1. Apply the power rule: xx goes to 11

              So, the result is: 12\frac{1}{2}

            2. The derivative of the constant π6\frac{\pi}{6} is zero.

            The result is: 12\frac{1}{2}

          The result of the chain rule is:

          sin(x2+π6)2- \frac{\sin{\left(\frac{x}{2} + \frac{\pi}{6} \right)}}{2}

        To find ddxg(x)\frac{d}{d x} g{\left(x \right)}:

        1. Let u=x2+π6u = \frac{x}{2} + \frac{\pi}{6}.

        2. The derivative of sine is cosine:

          ddusin(u)=cos(u)\frac{d}{d u} \sin{\left(u \right)} = \cos{\left(u \right)}

        3. Then, apply the chain rule. Multiply by ddx(x2+π6)\frac{d}{d x} \left(\frac{x}{2} + \frac{\pi}{6}\right):

          1. Differentiate x2+π6\frac{x}{2} + \frac{\pi}{6} term by term:

            1. The derivative of a constant times a function is the constant times the derivative of the function.

              1. Apply the power rule: xx goes to 11

              So, the result is: 12\frac{1}{2}

            2. The derivative of the constant π6\frac{\pi}{6} is zero.

            The result is: 12\frac{1}{2}

          The result of the chain rule is:

          cos(x2+π6)2\frac{\cos{\left(\frac{x}{2} + \frac{\pi}{6} \right)}}{2}

        Now plug in to the quotient rule:

        sin2(x2+π6)2cos2(x2+π6)2sin2(x2+π6)\frac{- \frac{\sin^{2}{\left(\frac{x}{2} + \frac{\pi}{6} \right)}}{2} - \frac{\cos^{2}{\left(\frac{x}{2} + \frac{\pi}{6} \right)}}{2}}{\sin^{2}{\left(\frac{x}{2} + \frac{\pi}{6} \right)}}

    So, the result is: 4(sin2(x2+π6)2+cos2(x2+π6)2)cos2(x2+π6)tan2(x2+π6)- \frac{4 \left(\frac{\sin^{2}{\left(\frac{x}{2} + \frac{\pi}{6} \right)}}{2} + \frac{\cos^{2}{\left(\frac{x}{2} + \frac{\pi}{6} \right)}}{2}\right)}{\cos^{2}{\left(\frac{x}{2} + \frac{\pi}{6} \right)} \tan^{2}{\left(\frac{x}{2} + \frac{\pi}{6} \right)}}

  2. Now simplify:

    4(cos(x+π3)+1)tan2(x2+π6)- \frac{4}{\left(\cos{\left(x + \frac{\pi}{3} \right)} + 1\right) \tan^{2}{\left(\frac{x}{2} + \frac{\pi}{6} \right)}}


The answer is:

4(cos(x+π3)+1)tan2(x2+π6)- \frac{4}{\left(\cos{\left(x + \frac{\pi}{3} \right)} + 1\right) \tan^{2}{\left(\frac{x}{2} + \frac{\pi}{6} \right)}}

The graph
02468-8-6-4-2-1010-50005000
The first derivative [src]
          2/x   pi\
-2 - 2*cot |- + --|
           \2   6 /
2cot2(x2+π6)2- 2 \cot^{2}{\left(\frac{x}{2} + \frac{\pi}{6} \right)} - 2
The second derivative [src]
  /       2/pi + 3*x\\    /pi + 3*x\
2*|1 + cot |--------||*cot|--------|
  \        \   6    //    \   6    /
2(cot2(3x+π6)+1)cot(3x+π6)2 \left(\cot^{2}{\left(\frac{3 x + \pi}{6} \right)} + 1\right) \cot{\left(\frac{3 x + \pi}{6} \right)}
The third derivative [src]
 /       2/pi + 3*x\\ /         2/pi + 3*x\\
-|1 + cot |--------||*|1 + 3*cot |--------||
 \        \   6    // \          \   6    //
(cot2(3x+π6)+1)(3cot2(3x+π6)+1)- \left(\cot^{2}{\left(\frac{3 x + \pi}{6} \right)} + 1\right) \left(3 \cot^{2}{\left(\frac{3 x + \pi}{6} \right)} + 1\right)