Detail solution
-
The derivative of a constant times a function is the constant times the derivative of the function.
-
Don't know the steps in finding this derivative.
But the derivative is
So, the result is:
-
Now simplify:
The answer is:
The first derivative
[src]
cos(E)*c*x
3*x *(c*cos(E) + c*cos(E)*log(x))
$$3 x^{x c \cos{\left(e \right)}} \left(c \log{\left(x \right)} \cos{\left(e \right)} + c \cos{\left(e \right)}\right)$$
The second derivative
[src]
c*x*cos(E) /1 2 \
3*c*x *|- + c*(1 + log(x)) *cos(E)|*cos(E)
\x /
$$3 c x^{c x \cos{\left(e \right)}} \left(c \left(\log{\left(x \right)} + 1\right)^{2} \cos{\left(e \right)} + \frac{1}{x}\right) \cos{\left(e \right)}$$
The third derivative
[src]
c*x*cos(E) / 1 2 3 2 3*c*(1 + log(x))*cos(E)\
3*c*x *|- -- + c *(1 + log(x)) *cos (E) + -----------------------|*cos(E)
| 2 x |
\ x /
$$3 c x^{c x \cos{\left(e \right)}} \left(c^{2} \left(\log{\left(x \right)} + 1\right)^{3} \cos^{2}{\left(e \right)} + \frac{3 c \left(\log{\left(x \right)} + 1\right) \cos{\left(e \right)}}{x} - \frac{1}{x^{2}}\right) \cos{\left(e \right)}$$