cos(E)*c*x 3*x
3*x^((cos(E)*c)*x)
The derivative of a constant times a function is the constant times the derivative of the function.
Don't know the steps in finding this derivative.
But the derivative is
So, the result is: 3(xccos(e))xccos(e)(log(xccos(e))+1)3 \left(x c \cos{\left(e \right)}\right)^{x c \cos{\left(e \right)}} \left(\log{\left(x c \cos{\left(e \right)} \right)} + 1\right)3(xccos(e))xccos(e)(log(xccos(e))+1)
Now simplify:
The answer is:
cos(E)*c*x 3*x *(c*cos(E) + c*cos(E)*log(x))
c*x*cos(E) /1 2 \ 3*c*x *|- + c*(1 + log(x)) *cos(E)|*cos(E) \x /
c*x*cos(E) / 1 2 3 2 3*c*(1 + log(x))*cos(E)\ 3*c*x *|- -- + c *(1 + log(x)) *cos (E) + -----------------------|*cos(E) | 2 x | \ x /