Mister Exam

Derivative of 3x^(cosecx)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
   cos(E)*c*x
3*x          
$$3 x^{x c \cos{\left(e \right)}}$$
3*x^((cos(E)*c)*x)
Detail solution
  1. The derivative of a constant times a function is the constant times the derivative of the function.

    1. Don't know the steps in finding this derivative.

      But the derivative is

    So, the result is:

  2. Now simplify:


The answer is:

The first derivative [src]
   cos(E)*c*x                             
3*x          *(c*cos(E) + c*cos(E)*log(x))
$$3 x^{x c \cos{\left(e \right)}} \left(c \log{\left(x \right)} \cos{\left(e \right)} + c \cos{\left(e \right)}\right)$$
The second derivative [src]
     c*x*cos(E) /1                 2       \       
3*c*x          *|- + c*(1 + log(x)) *cos(E)|*cos(E)
                \x                         /       
$$3 c x^{c x \cos{\left(e \right)}} \left(c \left(\log{\left(x \right)} + 1\right)^{2} \cos{\left(e \right)} + \frac{1}{x}\right) \cos{\left(e \right)}$$
The third derivative [src]
     c*x*cos(E) /  1     2             3    2      3*c*(1 + log(x))*cos(E)\       
3*c*x          *|- -- + c *(1 + log(x)) *cos (E) + -----------------------|*cos(E)
                |   2                                         x           |       
                \  x                                                      /       
$$3 c x^{c x \cos{\left(e \right)}} \left(c^{2} \left(\log{\left(x \right)} + 1\right)^{3} \cos^{2}{\left(e \right)} + \frac{3 c \left(\log{\left(x \right)} + 1\right) \cos{\left(e \right)}}{x} - \frac{1}{x^{2}}\right) \cos{\left(e \right)}$$