__________ \/ 3*sin(x) + cos(x)
sqrt(3*sin(x)) + cos(x)
Differentiate term by term:
Let .
Apply the power rule: goes to
Then, apply the chain rule. Multiply by :
The derivative of a constant times a function is the constant times the derivative of the function.
The derivative of sine is cosine:
So, the result is:
The result of the chain rule is:
The derivative of cosine is negative sine:
The result is:
The answer is:
___ ________
\/ 3 *\/ sin(x) *cos(x)
-sin(x) + -----------------------
2*sin(x)
/ ___ ________ ___ 2 \ |\/ 3 *\/ sin(x) \/ 3 *cos (x) | -|---------------- + ------------- + cos(x)| | 2 3/2 | \ 4*sin (x) /
___ ___ 3
\/ 3 *cos(x) 3*\/ 3 *cos (x)
------------ + --------------- + sin(x)
________ 5/2
4*\/ sin(x) 8*sin (x)