Mister Exam

Derivative of √3sin(x)+cos(x)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
  __________         
\/ 3*sin(x)  + cos(x)
$$\sqrt{3 \sin{\left(x \right)}} + \cos{\left(x \right)}$$
sqrt(3*sin(x)) + cos(x)
Detail solution
  1. Differentiate term by term:

    1. Let .

    2. Apply the power rule: goes to

    3. Then, apply the chain rule. Multiply by :

      1. The derivative of a constant times a function is the constant times the derivative of the function.

        1. The derivative of sine is cosine:

        So, the result is:

      The result of the chain rule is:

    4. The derivative of cosine is negative sine:

    The result is:


The answer is:

The graph
The first derivative [src]
            ___   ________       
          \/ 3 *\/ sin(x) *cos(x)
-sin(x) + -----------------------
                  2*sin(x)       
$$\frac{\sqrt{3} \sqrt{\sin{\left(x \right)}} \cos{\left(x \right)}}{2 \sin{\left(x \right)}} - \sin{\left(x \right)}$$
The second derivative [src]
 /  ___   ________     ___    2            \
 |\/ 3 *\/ sin(x)    \/ 3 *cos (x)         |
-|---------------- + ------------- + cos(x)|
 |       2                 3/2             |
 \                    4*sin   (x)          /
$$- (\frac{\sqrt{3} \sqrt{\sin{\left(x \right)}}}{2} + \cos{\left(x \right)} + \frac{\sqrt{3} \cos^{2}{\left(x \right)}}{4 \sin^{\frac{3}{2}}{\left(x \right)}})$$
The third derivative [src]
  ___              ___    3            
\/ 3 *cos(x)   3*\/ 3 *cos (x)         
------------ + --------------- + sin(x)
    ________          5/2              
4*\/ sin(x)      8*sin   (x)           
$$\sin{\left(x \right)} + \frac{\sqrt{3} \cos{\left(x \right)}}{4 \sqrt{\sin{\left(x \right)}}} + \frac{3 \sqrt{3} \cos^{3}{\left(x \right)}}{8 \sin^{\frac{5}{2}}{\left(x \right)}}$$