Mister Exam

Other calculators

Derivative of 3sin(t/a)+cos(pi/17)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
     /t\      /pi\
3*sin|-| + cos|--|
     \a/      \17/
3sin(ta)+cos(π17)3 \sin{\left(\frac{t}{a} \right)} + \cos{\left(\frac{\pi}{17} \right)}
d /     /t\      /pi\\
--|3*sin|-| + cos|--||
dt\     \a/      \17//
t(3sin(ta)+cos(π17))\frac{\partial}{\partial t} \left(3 \sin{\left(\frac{t}{a} \right)} + \cos{\left(\frac{\pi}{17} \right)}\right)
Detail solution
  1. Differentiate 3sin(ta)+cos(π17)3 \sin{\left(\frac{t}{a} \right)} + \cos{\left(\frac{\pi}{17} \right)} term by term:

    1. The derivative of a constant times a function is the constant times the derivative of the function.

      1. Let u=tau = \frac{t}{a}.

      2. The derivative of sine is cosine:

        ddusin(u)=cos(u)\frac{d}{d u} \sin{\left(u \right)} = \cos{\left(u \right)}

      3. Then, apply the chain rule. Multiply by tta\frac{\partial}{\partial t} \frac{t}{a}:

        1. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: tt goes to 11

          So, the result is: 1a\frac{1}{a}

        The result of the chain rule is:

        cos(ta)a\frac{\cos{\left(\frac{t}{a} \right)}}{a}

      So, the result is: 3cos(ta)a\frac{3 \cos{\left(\frac{t}{a} \right)}}{a}

    2. Let u=π17u = \frac{\pi}{17}.

    3. The derivative of cosine is negative sine:

      dducos(u)=sin(u)\frac{d}{d u} \cos{\left(u \right)} = - \sin{\left(u \right)}

    4. Then, apply the chain rule. Multiply by ddtπ17\frac{d}{d t} \frac{\pi}{17}:

      1. The derivative of the constant π17\frac{\pi}{17} is zero.

      The result of the chain rule is:

      00

    The result is: 3cos(ta)a\frac{3 \cos{\left(\frac{t}{a} \right)}}{a}


The answer is:

3cos(ta)a\frac{3 \cos{\left(\frac{t}{a} \right)}}{a}

The first derivative [src]
     /t\
3*cos|-|
     \a/
--------
   a    
3cos(ta)a\frac{3 \cos{\left(\frac{t}{a} \right)}}{a}
The second derivative [src]
      /t\
-3*sin|-|
      \a/
---------
     2   
    a    
3sin(ta)a2- \frac{3 \sin{\left(\frac{t}{a} \right)}}{a^{2}}
The third derivative [src]
      /t\
-3*cos|-|
      \a/
---------
     3   
    a    
3cos(ta)a3- \frac{3 \cos{\left(\frac{t}{a} \right)}}{a^{3}}