Mister Exam

Other calculators

Derivative of (2x+1)*cos(3x-5)

Function f() - derivative -N order at the point
v

The graph:

from to

Piecewise:

The solution

You have entered [src]
(2*x + 1)*cos(3*x - 5)
(2x+1)cos(3x5)\left(2 x + 1\right) \cos{\left(3 x - 5 \right)}
(2*x + 1)*cos(3*x - 5)
Detail solution
  1. Apply the product rule:

    ddxf(x)g(x)=f(x)ddxg(x)+g(x)ddxf(x)\frac{d}{d x} f{\left(x \right)} g{\left(x \right)} = f{\left(x \right)} \frac{d}{d x} g{\left(x \right)} + g{\left(x \right)} \frac{d}{d x} f{\left(x \right)}

    f(x)=2x+1f{\left(x \right)} = 2 x + 1; to find ddxf(x)\frac{d}{d x} f{\left(x \right)}:

    1. Differentiate 2x+12 x + 1 term by term:

      1. The derivative of a constant times a function is the constant times the derivative of the function.

        1. Apply the power rule: xx goes to 11

        So, the result is: 22

      2. The derivative of the constant 11 is zero.

      The result is: 22

    g(x)=cos(3x5)g{\left(x \right)} = \cos{\left(3 x - 5 \right)}; to find ddxg(x)\frac{d}{d x} g{\left(x \right)}:

    1. Let u=3x5u = 3 x - 5.

    2. The derivative of cosine is negative sine:

      dducos(u)=sin(u)\frac{d}{d u} \cos{\left(u \right)} = - \sin{\left(u \right)}

    3. Then, apply the chain rule. Multiply by ddx(3x5)\frac{d}{d x} \left(3 x - 5\right):

      1. Differentiate 3x53 x - 5 term by term:

        1. The derivative of a constant times a function is the constant times the derivative of the function.

          1. Apply the power rule: xx goes to 11

          So, the result is: 33

        2. The derivative of the constant 5-5 is zero.

        The result is: 33

      The result of the chain rule is:

      3sin(3x5)- 3 \sin{\left(3 x - 5 \right)}

    The result is: 3(2x+1)sin(3x5)+2cos(3x5)- 3 \left(2 x + 1\right) \sin{\left(3 x - 5 \right)} + 2 \cos{\left(3 x - 5 \right)}

  2. Now simplify:

    (6x3)sin(3x5)+2cos(3x5)\left(- 6 x - 3\right) \sin{\left(3 x - 5 \right)} + 2 \cos{\left(3 x - 5 \right)}


The answer is:

(6x3)sin(3x5)+2cos(3x5)\left(- 6 x - 3\right) \sin{\left(3 x - 5 \right)} + 2 \cos{\left(3 x - 5 \right)}

The graph
02468-8-6-4-2-1010-100100
The first derivative [src]
2*cos(3*x - 5) - 3*(2*x + 1)*sin(3*x - 5)
3(2x+1)sin(3x5)+2cos(3x5)- 3 \left(2 x + 1\right) \sin{\left(3 x - 5 \right)} + 2 \cos{\left(3 x - 5 \right)}
The second derivative [src]
-3*(4*sin(-5 + 3*x) + 3*(1 + 2*x)*cos(-5 + 3*x))
3(3(2x+1)cos(3x5)+4sin(3x5))- 3 \left(3 \left(2 x + 1\right) \cos{\left(3 x - 5 \right)} + 4 \sin{\left(3 x - 5 \right)}\right)
5-я производная [src]
81*(10*cos(-5 + 3*x) - 3*(1 + 2*x)*sin(-5 + 3*x))
81(3(2x+1)sin(3x5)+10cos(3x5))81 \left(- 3 \left(2 x + 1\right) \sin{\left(3 x - 5 \right)} + 10 \cos{\left(3 x - 5 \right)}\right)
The third derivative [src]
27*(-2*cos(-5 + 3*x) + (1 + 2*x)*sin(-5 + 3*x))
27((2x+1)sin(3x5)2cos(3x5))27 \left(\left(2 x + 1\right) \sin{\left(3 x - 5 \right)} - 2 \cos{\left(3 x - 5 \right)}\right)